Распыление жидкости способы распыления жидкости

Реферат по теме выпускной работы

Содержание

Введение

Распыление жидкостей является сложным процессом, зависящим от многих факторов. Распад струи на капли и дробление капель происходит на выходе струи из распылителя под действием внешних и внутренних сил.

К внешним – аэродинамическим силам относятся силы взаимодействия распыляемого компонента со средой, в которую он впрыскивается. Их значение зависит от плотности окружающей среды, скорости струи и размеров капель жидкости. К внешним силам относятся также силы взаимодействия при пересечении струй или при встрече струй с твердой стенкой. С увеличением скорости движения струи относительно среды, в которую происходит впрыск, влияние внешних сил растет, что приводит к быстрейшему её дроблению и, следовательно, к улучшению качества распыления.

К внутренним силам относятся молекулярные силы и турбулентность потока. В струе вытекающей жидкости возникают турбулентные пульсации, интенсивность которых зависит от её плотности, вязкости, перепада давления, а также от конструкции распылителя. Увеличение скорости истечения способствует увеличению интенсивности турбулентных пульсаций, что в свою очередь, улучшает качество распыления.

1. Состояние вопроса и задачи исследований

1.1 Особенности способов распыления жидких сред

Дробление жидкости и образование капель происходит следующим образом. При впрыске жидкости, например форсункой, под действием внешних сил и турбулентных пульсаций струя жидкости распадается на частицы различной величины и формы. Малые частицы под действием поверхностного натяжения принимают форму шара и образуют капли; крупные частицы продолжают распадаться дальше.

В этих условиях возникает проблема поиска дополнительных дешёвых энергоносителей и совершенствования технологий использования твёрдого топлива. Именно это обстоятельство является первоочередным стимулирующим фактором к использованию в теплоэнергетике высокозольных отходов обогащения угля (шламов). В этом плане более целесообразным представляется использование извлекаемых из шламонакопителей высокозольных угольных шламов в качестве исходного продукта для приготовления водоугольного топлива. Привлекательным фактором в этом случае является и то обстоятельство, что уголь уже измельчён и, следовательно, энергоёмкость процесса приготовления ВУТ будет существенно снижена по сравнению с рядовым углём.

Дисперсность распыляемой жидкости характеризуется средним диаметром образующихся капель, чем меньше средний диаметр капель, тем лучше распыл. Часто в качестве характеристики дисперсности распыла жидкости вводится так называемый медианный диаметр капель, который соответствует диаметру половины общего числа всех капель. Это значит, что из общей массы капель половина будет обладать размерами больше, а половина – меньше медианного диаметра. Иногда дисперсность распыла характеризуется средним диаметром капли, под которым подразумевается тот диаметр, который имели бы капли одинакового размера, если бы их общая поверхность и общий объем были такими же, как и в струе, состоящей из капель различных размеров. Неравномерность распыления характеризуется отношением истинного числа капель к тому числу, которое получилось бы, если бы все частицы имели одинаковый диаметр.

Для исследуемой конструкции форсунки диаметр капель зависит от диаметра сопла, скорости впрыска жидкости, её вязкости, плотности, поверхностного натяжения и плотности среды, в которую производится впрыск. В современных распылительных устройствах достигаемый диаметр капли диспергированной жидкости составляет от 15 до 250 мкм. Это значит, что в 1 см3 распыленной жидкости содержится примерно 6·10^6 капель. Однородность распыления характеризуется диапазоном изменения диаметров капель в факеле распыленной жидкости. Чем уже этот диапазон, тем больше однородность распыла.

1.2 Способы распыления жидкостей

В работе [3] предложено классифицировать распыление исходя из условий перемещения струи. Исходя из этого можно выделить следующие способы распыления жидкости: гидравлическое, механическое, пневматическое, пульсационное, ультразвуковое и электрическое.

При гидравлическом способе распыления жидкость дробится за счет давления нагнетания при свободном распаде струи (пленки или первичных крупных капель), вытекающей с большой скоростью из соплового отверстия распылителя. Распыляющие устройства, с помощью которых реализуется этот способ, широко известны под названием механических (гидравлических) форсунок. В зависимости от скорости истечения жидкости из форсунки различают несколько видов распада струи. При малых скоростях струя на некотором расстоянии от сопла, благодаря возникающим осесимметричным деформациям (амплитуда которых постепенно возрастает), распадается на отдельные крупные капли равных диаметров [4]. С увеличением скорости истечения жидкости возникают волнообразные деформации, ось струи искривляется, эти деформации усиливаются и приводят к волнообразному распаду. Наконец, при дальнейшем увеличении скорости струи длина не распавшегося участка резко сокращается, и струя начинает распадаться вблизи сопла. Последний вид распада называют распылением [3].

Аналогично распадаются жидкостные пленки. При малой скорости истечения пленка не имеет разрывов и под действием сил поверхностного натяжения стягивается, образуя «пузырь», с нижней точки которого срываются крупные капли. При дальнейшем увеличении скорости истечения длина пленки сокращается, пока распад не начинается непосредственно вблизи сопла. Результаты опытов показали [5], что не распавшийся участок струи сохраняется даже при очень высоких давлениях. По оценочным расчетам нарушение сплошности для воды наблюдается примерно при давлении 5·10^5 кПа. Распад капель также зависит от скорости истечения. При малой скорости капли не дробятся и увлекаются воздухом. С увеличением скорости капли теряют устойчивость и распадаются на более мелкие. При очень больших скоростях капля под влиянием перепада давления на её поверхности образует тело, похожее на эллипсоид, который быстро сплющивается в центре и превращается в жидкое кольцо с тонкой оболочкой. Диаметр кольца всё более увеличивается, оболочка разрушается и появляется множество мельчайших капель. Наконец и само кольцо дробится на мелкие капли [6].

Читайте также:  Есть два способа быть понятым

Гидравлическое распыление самое экономичное (затрачивается от 2 до 4 кВт на 1 тонну жидкости), однако создаваемый при этом распыл довольно грубый и неоднородный. Затруднено регулирование расхода жидкости при заданном качестве дробления, а также распыление высоковязких жидкостей в холодном состоянии. Вместе с тем этот способ наиболее широко распространен вследствие сравнительной его простоты.

Механическое распыление осуществляется с помощью механизмов, вращающихся от специального привода. Жидкость приобретает кинетическую энергию вследствие действия центробежных сил. Как и в случае гидравлического распыления, в зависимости от конструкции распыляющего механизма (диск, стакан, конус и др.), дроблению подвергается струя или пленка жидкости. Характер дробления жидкости в данном случае в значительной мере определяется её расходом. При очень малом расходе на кромке вращающегося диска возникает жидкий тор, который под действием центробежных сил деформируется и на нём образуются шаровидные узлы, затем они отрываются в виде отдельных капель. При увеличении расхода эти узлы вытягиваются в тонкие струи и нити [5]. Число нитей увеличивается, достигая постоянной величины. При дальнейшем увеличении расхода нити не могут пропустить всю жидкость из тора, жидкость сбрасывается с кромки и образует пленку. Вначале эта пленка вытягивается на определенное расстояние от кромки, а далее распадается на нити и крупные капли. К достоинствам этого способа следует отнести возможность распыления высоковязких и загрязненных жидкостей и широкого регулирования производительности распылителя без существенного изменения дисперсности. Основные недостатки вращающихся распылителей: высокая стоимость, сложность в изготовлении и эксплуатации, большая энергоемкость (15 кВт на 1 тонну жидкости) и, кроме этого, наличие вентиляционного эффекта. Механическое распыление используют главным образом для дробления вязких жидкостей и суспензий.

В случае пневматического распыления диспергирование является следствием динамического взаимодействия потока распыляемой жидкости с потоком распыляющего газа (пара) [7,8]. Последний выходит из канала с большой скоростью (от 50 до 300 м/с), скорость же истечения струй жидкости невелика. При большой относительной скорости потоков между струями газа и жидкости возникает трение, вследствие чего струя жидкости, будучи как бы закрепленной с одной стороны, вытягивается в отдельные тонкие нити. Эти нити в местах утончения быстро распадаются и образуют мелкие капли. Длительность существования статически неустойчивой формы в виде нитей зависит от скорости газа и физических свойств жидкости. Чем больше скорость, тем тоньше нить, тем меньше период её существования и тем более мелким получается распыл. К достоинствам пневматического способа относятся: малая, по сравнению с гидравлическим, зависимость качества распыления oт расхода жидкости, надежность в эксплуатации, возможность распыления высоковязких жидкостей. Недостатки: повышенный расход энергии на распыление (от 50 до 60 кВт на 1 тонну жидкости), необходимость в распыляющем агенте и в связанном с ним оборудовании. При электрическом распылении струя (пленка) жидкости подаётся в область сильного электрического поля. Под действием этого поля на поверхности жидкости происходит некоторое распределение давления, которое деформирует струю. Деформации могут достичь большой амплитуды и привести к образованию тонких струй, которые затем дробятся [10]. Недостатки электрического распыления: необходимость в громоздком и дорогостоящем оборудовании, его высокая энергоёмкость, а также весьма незначительная производительность и сложность обслуживания. Вместе с тем этот метод находит применение в некоторых распылительных сушилках и в процессах окраски поверхностей методом распыления.

Ультразвуковое распыление может осуществляться по двум схемам [3,11]. В одном случае струя (пленка) жидкости подается на колеблющийся элемент пьезоэлектрического или магнитострикционного генератора, в другом она подвергается действию ультразвуковых колебаний воздуха [12]. По сущности протекающих процессов – это два различных способа, которые объединяет лишь наложение на жидкость колебаний сверхзвуковых частот. Поэтому первый способ распыления называется ультразвуковым, а второй – акустическим. В указанных распыляющих устройствах под действием ультразвука в жидкой среде происходит комплекс физических и физико–химических процессов, к числу которых, в первую очередь, относят кавитацию, звуковое давление, акустическое течение [13]. Воздействие звукового излучения и звукового давления приводит к отрыву отдельных капель с гребней микроволн. Распаду струи способствует интенсивное образование кавитационных зон [14].

Читайте также:  Какую щепу использовать для копчения курицы горячим способом

Явление кавитации связано с большой чувствительностью жидкостей к растягивающим усилиям. При прохождении фазы разряжения ультразвуковой волны в жидкости возникает большое количество разрывов в виде мельчайших полостей (каверн), называемых кавитационными пузырьками. Образовавшиеся пузырьки в следующем полупериоде сжатия резко захлопываются. Причем, если одиночный пузырек расширяется сравнительно медленно, то сжимается он особенно в последней стадии чрезвычайно быстро [15]. При захлопывании кавитационной полости пар не успевает конденсироваться на её поверхности, давление и температура в полости резко возрастают, достигая значений 3·10^5 кПа и 6000 К. Пар, сжатый в микрообъеме полости, стремительно расширяется, и в жидкости возникает ударная волна, подобная точечному взрыву, приводящая к тонкому дроблению струи (пленки) жидкости (размер капель при этом составляет от 120 до 20 мкм и менее). Недостатками пьезоэлектрических и магнитострикционных устройств являются: их малая производительность (от 0,5 до 6 л/ч) и необходимость сложного дорогостоящего оборудования.

В акустических распылителях используют неустойчивость газовой струи, с которой соприкасается струя или пленка жидкости. Колебания газовой струи резко увеличиваются в результате различных волновых явлений, возникающих в жидкости, особенно в резонансной области. Последние приводят к значительно более тонкому дроблению жидкости, чем обычное пневматическое распыление. Так, отмечается в работе [15], если для уменьшения размера капель со 120 до 110 мкм при пневматическом распылении требуется увеличить энергию на 5 Вт/кг жидкости, то при акустическом распылении только на 0,15 Вт/кг, т. е. в 30 раз меньше. Таким образом, аэродинамическое ультразвуковое распыление, сохраняя все недостатки пневматического распыления, является более экономичным и перспективным. Однако конструкция ультразвуковых распылителей значительно сложнее.

Пульсационное распыление заключается в том, что возмущения, вызывающие дробление струи (пленки) жидкости, усиливаются за счет пульсаций давления и изменения расхода, которые создаются периодическим перекрытием проходных каналов (или соплового отверстия) распылителя. Пульсации давления приводят к увеличению поверхностной энергии струи, быстрой потере устойчивости и как следствие к более тонкому распылению, чем при первых трех способах. Пульсационное распыление может сочетаться с любым из рассмотренных выше способов, т. е. может быть реализовано пульсационно–гидравлическое, пульсационно–механическое, пульсационно–пневматическое распыление и т. д. При этом преимущества того или иного способа дополняются повышением качества и однородности дробления, происходящем в ряде случаев без увеличения энергозатрат и при незначительном усложнении конструкции распылителей. Таким образом, пульсационное распыление является весьма перспективным. Вместе с тем этот способ диспергирования жидкостей практически еще не изучен.

Анализ способов распыления жидкостей [16–19] позволяет сделать следующие выводы:

– течение жидкости перед распылением должно быть преобразовано в такие формы (струя, пленка), которые обладают наибольшей поверхностной энергией, а поэтому неустойчивы и быстро распадаются;

– распыление жидкости при любых способах обусловлено потерей устойчивости течения в струях или пленках в связи с возникновением на поверхности раздела жидкости и газа неустойчивых волн;

– в зависимости от конкретных условий производства и требований к качеству и дисперсности готового продукта наиболее экономичным может оказаться любой способ распыления.

1.3 Влияние конструктивных факторов на работу центробежных форсунок

Выбранная схема форсунки должна обеспечивать заданную дисперсность жидкой среды при минимальном давлении на входе в форсунку. Это возможно в том случае [2], если в камере закручивания, сопловом отверстии и тангенциальных каналах форсунки трение будет минимальным. Для уменьшения трения тангенциальные каналы должны быть предельно короткими, а число их сведено до минимума.

Рисунок 1 –Схема центробежной форсунки: 1 – корпус, 2 – двухканальный завихритель

Обычно допускают длину тангенциального канала, составляющую от одного до двух его диаметров. Меньшая длина не обеспечивает осевое направление движения жидкости в канале. Если требуется равномерное распределение распыленной жидкости, то число тангенциальных каналов должно быть не меньше двух–трех. Причем больше трех тангенциальных каналов рекомендуется делать только в том случае, когда их диаметр превышает разность значений радиуса камеры закручивания и сопла. Если диаметр тангенциального канала существенно превышает радиус камеры закручивания, то возникают значительные потери энергии в результате гидравлического удара при смешивании жидкости, поступающей из тангенциальных каналов, и жидкости, вращающейся в камере закручивания. Если диаметр тангенциального канала мал в сравнении с диаметром камеры закручивания, то вследствие малой разности скоростей смешивающихся струй потери энергии от гидравлического удара будут невелики.

В предварительных расчетах можно принимать коэффициент расхода тангенциальных каналов равный 0,68. Оси тангенциальных каналов расположены относительно оси форсунки обычно под углом 90°. В большинстве случаев изготавливают центробежные форсунки, которые обеспечивают угол факела распыленной среды от 80 до 90°. Они рассчитаны на то, чтобы обеспечить минимальное трение. Однако вследствие сложности изготовления проточной части форсунок малых размеров не всегда возможно соблюсти требуемые геометрические соотношения.

Важный момент для совершенствования конструкций форсунок, кроме разработки методики расчета основных технологических и конструктивных параметров их, заключается в возможности изготовления основных элементов распылителя с минимальными допусками. Вопрос о технологии изготовления форсунок приобрел особое значение в настоящее время, когда во многих отраслях народного хозяйства используются агрегаты большой производительности, в которых устанавливается несколько форсунок. В этом случае предъявляются повышенные требования к точности совпадения расходных характеристик каждой из них. Конечно, невозможно изготовить комплект форсунок, которые имели бы совершенно одинаковые характеристики по расходу жидкости. Однако исходя из требуемой точности совпадения расходных характеристик отдельных форсунок можно найти, с какими допусками должны быть выполнены размеры распылителя, чтобы удовлетворить поставленным требованиям.

Читайте также:  Как способ сохранить брак

Для форсунки любого типа важно знать допуски не только на основные элементы, обеспечивающие взаимозаменяемость, но и на возможный их износ при эксплуатации. Поэтому, прежде всего, нужно найти зависимости отклонения расхода жидкости от точности выполнения основных геометрических размеров деталей распылителя. Расход жидкости, в свою очередь, влияет на размеры капель жидкости и их распределение. Из рассмотрения форсунок разных типов видно [5], что наибольшая точность должна выдерживаться при выполнении форсунок центробежного типа. Для количественной оценки влияния конструктивных параметров и точности выполнения углов центробежных форсунок на изменение расхода жидкости используется метод малых отклонений.

Рисунок 2 – Центробежная форсунка с двухканальным завихрителем

Достижение стабильности характеристик форсунок связано с условиями их эксплуатации. Несмотря на фильтрование жидкости, механические примеси всё же попадают в трубопровод, в том числе и в распылитель, вызывая его интенсивный износ. При этом изменяются геометрические размеры каналов форсунки, нарушается нормальная её работа и уменьшается срок эксплуатации. Абразивный износ внутренних поверхностей, особенно стенок сопла, приводит к изменению формы факела, увеличению расхода жидкости и укрупнению капель. Скорость износа определяется степенью загрязненности жидкости механическими примесями, их составом, а также давлением жидкости. Для повышения надежности работы форсунок необходимо соблюдать требования инструкции по их эксплуатации. Все форсунки время от времени необходимо разбирать для чистки и проверки. Подготовленные к эксплуатации форсунки рекомендуется проверять на стенде. Особое внимание обращается на отсутствие течи жидкости из соединений, достижение необходимой производительности, требуемой величины угла факела, качества распыления и симметрии факела.

1.4 Измерение скорости капель и газовой среды при распылении

Для определения скорости капель наиболее часто используется метод скоростной киносъемки. Для этих целей широкое применение находят серийно выпускаемые кинокамеры, работающие с частотой кадров 1500 с–1. Известны также методы радиоизотопного определения скорости частиц [28] и [29], метод светового трассирования и некоторые другие. Предложен способ определения средней скорости совокупности частиц, основанный на использовании подвижной ловушки. При малых значениях плотности и скорости капель, площади поперечного сечения ловушки высота перемещений ловушки может оказаться соизмеримой с высотой аппарата, что неприемлемо. В таких случаях рекомендуется осуществлять многократное возвратно–поступательное движение ловушки. При этом, когда ловушка движется навстречу частицам, она открыта, а когда возвращается в исходное положение – закрыта. Для успешной реализации этого способа необходимо обеспечить быстродействие заслонки и небольшую перемещаемую массу, при которой инерционность системы и динамические перегрузки в приводном узле будут невелики. Поскольку ловушка перемещается в объеме аппарата, выбор её габаритов и скоростей определяется условиями, при которых исключается отклонение траектории капель от своего истинного направления. Погрешность при определении средней скорости частиц составляет от 10 до 15 %.

Погрешность при определении средней скорости частиц составляет от 10 до 15 %. Измерение скорости газовых потоков, несущих взвешенные частицы, требует использования датчиков, защищенных от попадания частиц в контролируемую среду. Применительно к исследованиям зоны факела распыления задача измерения осложняется значительным диапазоном скоростей – от десятков метров в секунду до десятых и сотых долей метров в секунду. Если концентрация частиц в газовой среде мала, используют традиционные средства измерений гомогенных газовых потоков. В этом случае достаточна периодическая продувка датчика чистым воздухом. Способы механической сепарации частиц вызывают искажение скоростей в измеряемой зоне. Перспективен метод электростатической защиты датчика, при котором электростатическое поле отклоняет траектории частиц, незначительно воздействуя на газовую фазу. Известен метод флюоресцентного трассирования, применимый при остаточном давлении в аппарате от 0,95 до 1,36 кПа.

В настоящее время не существует достаточно надежных универсальных устройств, которые можно было бы рекомендовать в качестве измерителей скорости газа в присутствии капель жидкости. Указанные экспериментальные задачи обычно решаются в каждом частном случае исследователями самостоятельно в зависимости от свойств, размеров и концентрации диспергированных частиц, а также от свойств и условий движения газовой фазы.

При написании данного реферата магистерская работа еще не завершена. Окончательное завершение: май 2017 года. Полный текст работы и материалы по теме могут быть получены у автора или его руководителя после указанной даты.

Источник

Оцените статью
Разные способы