- Законы умножения
- Переместительный закон умножения
- Сочетательный закон умножения
- Распределительный закон умножения
- Урок 16 Бесплатно Применение распределительного свойства умножения
- Распределительное свойство умножения
- Умножение смешанного числа на натуральное используя распределительной свойство
- Свойства умножения и деления
- Свойства умножения
- Переместительное свойство умножения
- Сочетательное свойство умножения
- Распределительное свойство умножения относительно сложения
- Распределительное свойство умножения относительно вычитания
- Свойство нуля при умножении
- Свойство единицы при умножении
- Свойства деления
- Умножение дробей: теория и практика
- Понятие дроби
- Основные правила дробей
- Умножение дробных чисел
- Как умножить дробь на дробь
- Как умножить смешанные дроби
- Как умножить дробь на натуральное число
- Решение задач
- Задание 1. Выполнить умножение 2/17 на 5.
- Задание 2. Выполнить умножение 4/15 и 55/6.
- Задание 3. Выполнить умножение одной целой трех седьмых на шесть.
Законы умножения
Переместительный закон умножения
Если множимое и множитель поменять местами, то произведение не изменится. Это можно легко проверить при подсчёте двумя способами числа звёздочек представленных на рисунке:
3 + 3 + 3 + 3 = 4 + 4 + 4
Так как множимое и множитель можно менять местами их ещё называют сомножителями или просто множителями.
Таким образом, для любых натуральных чисел a и b верно равенство:
выражающее переместительный закон умножения:
От перестановки сомножителей произведение не меняется.
Сочетательный закон умножения
Произведение чисел 3, 2 и 4 не изменится, если из них какие-нибудь два числа заменить их произведением:
3 · 2 · 4 = 3 · (2 · 4) = 3 · 8 = 24,
3 · 2 · 4 = (3 · 2) · 4 = 6 · 4 = 24.
Таким образом, для любых натуральных чисел a, b и c верно равенство:
выражающее сочетательный закон умножения:
Произведение не изменится, если какую-либо группу сомножителей заменить их произведением.
Распределительный закон умножения
Для любых натуральных чисел верны равенства:
выражающие распределительный закон умножения:
Чтобы число умножить на сумму чисел, можно это число умножить отдельно на каждое слагаемое и полученные произведения сложить.
Чтобы сумму чисел умножить на число, можно каждое слагаемое отдельно умножить на число и полученные произведения сложить.
Распределительный закон умножения можно легко проверить при подсчёте двумя способами числа звёздочек, представленных на рисунке:
Первый: в каждом ряду расположено 3 жёлтых и 5 зелёных звёздочек, то есть всего в каждом ряду (3 + 5) звёздочек. В четырёх рядах всего (3 + 5) · 4 звёздочек.
Второй: жёлтые звёздочки расположены в четыре ряда по 3 звёздочки в каждом, то есть всего жёлтых звёздочек 3 · 4, а зелёных — 5 · 4. Всего звёздочек 3 · 4 + 5 · 4.
Кроме того, для любых натуральных чисел (если уменьшаемое больше или равно вычитаемому) верны равенства:
Например, 6 · (4 — 2) = 6 · 4 — 6 · 2.
Переход от умножения:
соответственно к сложению и вычитанию:
называется раскрытием скобок.
Переход от сложения и вычитания:
называется вынесением общего множителя за скобки.
Источник
Урок 16 Бесплатно Применение распределительного свойства умножения
В этом уроке мы узнаем, как умножать смешанное число на натуральное, и разберем, как использовать распределительное свойство умножения для рационализации вычислений с обыкновенными дробями и смешанными числами.
Распределительное свойство умножения
Это свойство говорит нам о том, что если необходимо умножить одно число, назовем его a, на сумму двух других чисел, обозначим их b и c, то ответом будет сумма двух произведений: произведения a и b и произведения a и c
Напомним, коммутативное свойство — это научный термин для обычного правила, которое гласит, что перемена мест слагаемых (или множителей) не влияет на результат.
Вторая строка говорит о том же самом, что и первая; просто показывает, что коммутативное свойство умножения работает и в этом случае.
Умножение смешанного числа на натуральное используя распределительной свойство
В уроке «Умножение дробей» мы уже касались этих моментов. Теперь рассмотрим их более подробно.
Самый простой способ умножения смешанного числа на натуральное заключается в том, чтобы перевести смешанное число в натуральную дробь, домножив целую часть на знаменатель и прибавив его к числителю, а далее домножить полученную неправильную дробь на натуральное число, перемножив числитель дроби и натуральное число.
Это и будет результатом.
Пример:
Этот пример нам показывает, что даже такая простая операция, как умножение на 2, приводит нас к множеству умножений, сложений и даже делению. Для больших чисел такой путь неудобен. Стоит только представить, что целая часть смешанного числа будет больше 100, и знаменатель также также весьма сложный, то мы получим операции, которые с трудом делаются в уме.
Здесь нас выручит распределительное свойство.
Если представить \(\mathbf<43\frac<1><3>>\) как сумму его целой и дробной частей, то есть
\(\mathbf<43\frac<1><3>=43+\frac<1><3>>\), то нам нужно будет в дальнейшем умножать только 43 и \(\mathbf<\frac<1><3>>\), что значительно проще.
Посмотрим, как это все будет выглядеть целиком:
Можно заметить, что несмотря на то, что мы удлинили запись выражения, сами вычисления стали проще.
Может возникнуть необходимость выделения целой части, про это забывать нельзя. Но даже в таком случае делимое будет значительно меньше, чем если бы мы выносили целую часть из произведения, полученного классическим способом.
Пример:
Пройти тест и получить оценку можно после входа или регистрации
Источник
Свойства умножения и деления
О чем эта статья:
Свойства умножения
Умножение — арифметическое действие, в котором участвуют два аргумента: множимый и множитель. Результат их умножения называется произведением.
Узнаем, какие бывают свойства умножения и как их применять.
Переместительное свойство умножения
От перестановки мест множителей произведение не меняется.
То есть, для любых чисел a и b верно равенство: a * b = b * a.
Это свойство можно применять к произведениям, в которых больше двух множителей.
- 6 * 5 = 5 * 6 = 30;
- 4 * 2 * 3 = 3 * 2 * 4 = 24.
Сочетательное свойство умножения
Произведение трех и более множителей не изменится, если какую-то группу множителей заменить их произведением.
То есть, для любых чисел a, b и c верно равенство: a * b * c = (a * b) * c = a * (b * c).
- 3 * 2 * 5 = 3 * (2 * 5) = 3 * 10 = 30
Сочетательное свойство можно использовать, чтобы упростить вычисления при умножении. Например: 25 * 15 * 4 = (25 * 4) * 15 = 100 * 15 = 1500.
Если не применять сочетательное свойство и вычислять последовательно, решение будет значительно сложнее: 25 * 15 * 4 = (25 * 15) * 4 = 375 * 4 = 1500.
Распределительное свойство умножения относительно сложения
Чтобы умножить сумму на число, нужно умножить на это число каждое слагаемое и сложить полученные результаты.
То есть, для любых чисел a, b и c верно равенство: (a + b) * c = a * c + b * c.
Это свойство работает с любым количеством слагаемых: (a + b + с + d) * k = a * k + b * k + c * k + d * k.
В обратную сторону распределительное свойство умножения относительно сложения звучит так:
Чтобы число умножить на сумму чисел, нужно это число умножить отдельно на каждое слагаемое и полученные произведения сложить.
Распределительное свойство умножения относительно вычитания
Чтобы умножить разность на число, нужно умножить на это число сначала уменьшаемое, затем вычитаемое, и из первого произведения вычесть второе.
То есть, для любых чисел a, b и c верно равенство: (a − b) * c = a * c − b * c.
В обратную сторону распределительное свойство умножения относительно вычитания звучит так:
Чтобы число умножить на разность чисел, нужно это число умножить отдельно на уменьшаемое и вычитаемое и из первого полученного произведения вычесть второе.
Свойство нуля при умножении
Если в произведении хотя бы один множитель равен нулю, то само произведение будет равно нулю.
То есть, для любых чисел a, b и c верно равенство:
0 * a * b * c = 0.
Свойство единицы при умножении
Если умножить любое целое число на единицу, то в результате получится это же число.
То есть, умножение на единицу не изменяет умножаемое число: a * 1 = a.
Свойства деления
Деление — арифметическое действие обратное умножению. В результате деления получается число (частное), которое при умножении на делитель дает делимое.
Основные свойства деления целых чисел
- Деление на нуль невозможно.
- Деление нуля на число: 0 : a = 0.
- Деление равных чисел: a : a = 1.
- Деление на единицу: a : 1 = a.
- Для деления переместительное свойства не выполняется: a : b ≠ b : a.
- Деление суммы и разности на число: (a ± b) : c = (a : c) ± (b : c).
- Деление произведения на число:
(a * b) : c = (a : c) * b, если a делится на c;
(a * b) : c = a * (b : с), если b делится на c;
(a * b) : c = a * (b : с) = (a : c) * b, если a и b делятся на c. - Деление числа на произведение:
a : (b * c) = (a : b) * (1 : c) = (a : c) * (1 : b).
И еще одно важное свойство деления, которое проходят в 5 классе:
Если делимое и делитель умножить или разделить на одно и тоже натуральное число, то их частное не изменится.
В буквенной форме это свойство выглядит так: a : b = (a * k) : (b * k), где k — любое натуральное число.
Применим свойства деления на практике.
Пример 1
Мама купила 6 кг конфет и разложила их в три пакета. Сколько килограммов конфет в каждом пакете?
Так как в каждом пакете одинаковое количество конфет, разделим 6 кг на три равные части: 6 : 3 = 2. Значит в каждом пакете по 2 кг конфет.
Пример 2
Вычислить: 500 * (100 : 5).
Как решаем: 500 * (100 : 5) = (500 * 100) : 5 = 50000 : 5 = 10000.
Ответ: 500 * (100 : 5) = 10000.
Пример 3
Упростить выражение: 27a – 16a.
Как решаем: 27a – 16a = a * 27 – a * 16 = a * (27 — 16) = a * 11 = 11a.
Свойства умножения и деления помогают упрощать выражения. То есть, если запомнить эти свойства и научиться их применять, то решать задачки можно быстрее.
Источник
Умножение дробей: теория и практика
О чем эта статья:
5 класс, 6 класс
Понятие дроби
Дробь — одна из форм представления числа в математике. Это запись, в которой a и b являются числами или выражениями. Существует два формата записи:
- обыкновенный вид — 1/2 или a/b,
- десятичный вид — 0,5.
Над чертой принято писать делимое, которое является числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между числителем и знаменателем означает деление — в 5 классе уже это знают.
Дроби могут быть двух видов:
- Числовые — состоят из чисел, например, 5/9 или (1,5 — 0,2)/15.
- Алгебраические — состоят из переменных, например, (x + y)/(x — y). В этом случае значение дроби зависит от данных значений букв.
Дробь называют правильной, когда ее числитель меньше знаменателя:
Неправильной — ту, у которой числитель больше знаменателя или равен ему:
Такое число называют смешанным, читают как «пять целых одна четвертая», а записывают так: 5 1\4.
Основные правила дробей
- Если делитель равен нулю — у дроби нет значения
- Дробь равна нулю, если числитель равен нулю, а знаменатель — нет
- Две дроби a/b и c/d называют равными, если a * d = b * c.
- Если числитель и знаменатель умножить или разделить на одно и то же натуральное число — получится равная ей дробь.
Умножение дробных чисел
Рассмотрим несколько вариантов умножения обыкновенных дробей.
Как умножить дробь на дробь
Числитель равен произведению числителей обеих дробей, а знаменатель равен произведению знаменателей:
Важно проверить возможность сокращения — так решать будет легче:
Как умножить смешанные дроби
Преобразовать смешанные числа в неправильные, перемножить числители и знаменатели, при необходимости сократить и перевести в смешанную дробь.
Как умножить дробь на натуральное число
Метод 1. Числитель умножить на натуральное число, а знаменатель оставить без изменения. Если в результате произведения получилась неправильная дробь, нужно выделить целую часть, то есть превратить неправильную в смешанную.
Метод 2. Знаменатель разделить на натуральное число, а числитель оставить прежним.
Этот способ будет удобнее предыдущего, если знаменатель делится на натуральное число без остатка.
Решение задач
Ребятам в 5 и 6 классе нужно практиковаться как можно чаще, чтобы решать такие примеры быстро и легко.
Задание 1. Выполнить умножение 2/17 на 5.
Как решаем: перемножим делимое и натуральное число.
Ответ:
Задание 2. Выполнить умножение 4/15 и 55/6.
Как решаем:
- перемножим числители между собой и знаменатели соответственно
- сократим полученное
- выделим целую часть
Ответ:
Задание 3. Выполнить умножение одной целой трех седьмых на шесть.
Как решаем:
- переводим смешанное число в неправильную дробь,
- умножаем делимое на натуральное число,
- сократим полученное,
- преобразуем в смешанное число.
Ответ:
Если вопрос не ждет и ответ нужно получить как можно быстрее, можно использовать онлайн калькулятор. Умножение будет быстрым и точным:
Источник
3>