Энергообеспечение организма: способы энергообеспечения
В данной статье мы затронем вопрос и выясним, что такое энергообеспечение организма. Тема не обширная, однако, важная для решения определенных вопросов.
Способы энергообеспечения – это те способы, с помощью которых наш организм будет решать вопросы, связанные с двигательной активностью. Задачи и нагрузки на организм могут быть разными, а значит и способов энергообеспечения несколько.
Фосфогенный
Первый способ энергообеспечения – фосфогенный. Источником энергии в этом способе служит креатин фосфат и АТФ. Способ активизируется тогда, когда мы совершаем работу с максимальной мощностью длительностью от 5 до 30 секунд.
Фосфагенный способ энергообеспечения тесно связан с интенсивностью нагрузок. Активно работает в тренировках на силу миофибрелярную гипертрофию. Так как креатин фосфата и АТФ в нашем организме не так уж и много, этот способ является самым коротким и сменяется на другой уже после 30 секунд физической активности.
Анаэробный гликолиз
Второй способ – анаэробный гликолиз, где источником энергии служит гликоген. Включается при работе от 30 секунд или 1 минуты и работает до 30 минуты. Анаэробный гликолиз задействуется у нас когда мы работаем на сахаплазматическую гипертрофию (в режиме многоповторки).
Аэробное окисление
Третий способ – аэробное окисление. Источником энергии для него служат жиры. Включается при тренировочной частоте сердечных сокращений, как правило, на 60 минуте. У тренированных людей процесс аэробного окисления может включиться на 30 или даже 20 минуте. Данный способ активно работает при монотонной и длительной работе, которую мы, как правило, совершаем на наших кардиотренировках.
Но монотонной не значит истощающей. К примеру, пульс 130 ударов в минуту подразумевает под собой, как правило, просто быструю ходьбу.
Девушки, которых как магнитом манит на кадиотренажеры, как только они начали свою тренировку, мы обращаемся к вам. Как вы видите, нет никакого логического смысла начинать нашу тренировку с кардио если мы хотим сжечь жир, потому что жиры начнут использоваться только после первого часа монотонной кардиоработы.
Подобный тренинг не логичен с точки зрения дефицита и времени, так как на такую работу, от которой мы получим желаемый результат, вы должны потратить минимум 2 часа вашего времени. Гораздо более эффективно проводить наши тренировки, после силовой тренировки, когда наш энергетические запасы креатин фосфата, АТФ, гликогена отчасти истощены. А симпатическая нервная система работает на полную катушку, то есть готова к двигательной активности и к окислению жиров в том числе.
За те же 2 часа работы, час силовой и час кардио при хорошей подготовке, вы приведете мышцы в тонус и будете более эффективно использовать жиры в качестве энергии на вашей кардиотренировки, убьете двух зайцев сразу.
Новичкам кардио рекомендуется начинать с 10-15 минут с постепенным увеличением времени до 40-60 минут. Данная информация вносит понимание в тренировочный процесс и позволяет использовать те нагрузки, которые нужны нам для достижения наших целей.
Источник
Энергообеспечение мышечной деятельности
Энергетическая основа движения [ править | править код ]
Даже в абсолютном покое (во сне) человеку необходима энергия для обеспечения работы внутренних органов, поскольку любой вид деятельности требует расхода энергии. В таблице представлены данные о расходе энергии в различных видах спорта в пересчете на 1 кг массы тела человека в час. Вопреки существующему мнению спорт и физическая работа «сжигают» не так много калорий, на что обратили внимание немецкие исследователи (Кремер, Тренклер, 2000). В таблице приводится соотношение расхода энергии при работе в течение 1 ч и расхода калорий в соответствии с приемом адекватного количества пищевых продуктов.
Двигательная деятельность обеспечивается сократительной способностью мышц, которая зависит от скорости аккумуляции и расхода энергии. Между расходом и восстановлением энергии существует динамическое равновесие, которое зависит от многих факторов и существенно различается. Например у бегунов: спринтера в забеге на 60 м и стайера — на 42,195 км.
Стратегия тренера и медико-биологическое обеспечение при тренировке спортсменов, специализирующихся в спринтерских и стайерских дистанциях, существенно различается. Тренировка спринтера преимущественно направлена на совершенствование скорости: он тренирует свои скоростные качества, а стайер — выносливость. При этом интенсивность образования энергии для осуществления поставленных задач у них существенно отличается, а следовательно, разным должно быть и питание (его калорийность, соблюдение необходимого соотношения белков, углеводов и жиров, динамика поступления каждого из ингредиентов в организм и др.).
Ежедневный расход энергии в различных видах спорта представлен в таблице.
Общая структура годичного цикла подготовки практически во всех видах спорта включает три основных периода: подготовительный, соревновательный и переходный. В подготовительном периоде выделяют общеподготовительный и специально-подготовительный этапы, в соревновательном периоде — предсоревновательный и этап непосредственной подготовки к соревнованиям.
Энерготраты в каждый из периодов существенно отличаются, что требует особого внимания к компенсации энергодающих биомакромолекул в зависимости от вида выполняемой работы (анаэробной, смешанной или аэробной). На представленной схеме не отражен период восстановления как после главных соревнований, так и во время микро-, мезо- и макроциклов. Однако на него следует обратить серьезное внимание, чтобы не вызвать эффект перетренированности. Одним из факторов, вызывающих перетренированность, является неадекватное питание.
Способы сохранения энергии и реализации ее запасов для обеспечения движения могут быть разделены на два типа: анаэробный и аэробный. Они различаются между собой длительностью процесса, его интенсивностью и участием в нем кислорода.
Анаэробный алактатный (без участия лактата) путь энергообеспечения мышечной деятельности используется для короткой и интенсивной работы (спринт) — без участия кислорода, без образования молочной кислоты, за счет энергетических фосфатов.
Анаэробный лактатный путь энергообеспечения используется для средних и длинных дистанций — без участия кислорода, с образованием молочной кислоты, при окислении гликогена и глюкозы.
Смешанная зона анаэробно-аэробной производительности энергии характеризуется участием кислорода, использованием гликогена и свободных жирных кислот как источника энергии.
Взаимодействие процессов участия кислорода, источников энергии:
1)АТФ=>АДФ+ Р + свободная энергия;
2)креатинфосфат + АДФ => креатин + АТФ;
3)2 АДФ =>АТФ + АМФ.
4)гликоген или глюкоза + Р + АДФ => лактат + АТФ.
1) гликоген, глюкоза, жирные кислоты + Р + О2 => СО2 + Н2O + АТФ.
АТФ является главной биомакромолекулой, которая обеспечивает сокращение мышцы по схеме
актин + миозин + АТФ + Н20 => актин + + миозин + АДФ + Фнеорг = Работа.
Недостаток АТФ в клетке (в результате повышенного распада или недостаточного синтеза) лимитирует спортивную работоспособность.
Накопление энергии в клетках происходит за счет поступления в организм энергетически ценных продуктов животного и растительного происхождения. При этом углеводы обеспечивают 60 %, жиры — 25 %, белки — 15 % энергии, необходимой для выполнения работы. Скорость накопления или восстановления при предварительном расходе энергии бывает различной в зависимости от функционального состояния организма, вида спорта, а также действия определенных лекарственных веществ.
Аэробное окисление глюкозы с целью последующего синтеза АТФ происходит на первом этапе до двух молекул пировиноградной кислоты, которая превращается в ацетил-Ко А, окисление которого в свою очередь происходит в цикле лимонной кислоты и дыхательной цепи. При этом энергия АТФ расходуется на образование тепла и накапливается в клетках. Общий выход АТФ составляет 36 молекул. Аэробный механизм образования энергии (АТФ) из глюкозы в 18 раз более эффективен, чем анаэробный. Одним из факторов, который стимулирует поступление глюкозы в клетки мышц, является гипоксия.
Пути ресинтеза АТФ (КФ + АДФ => К + АТФ) в зависимости от расхода начинают функционировать параллельно и зависят от высокой концентрации АДФ. Из двух молекул АДФ образуется одна молекула АТФ (2АДФ АТФ + АМФ). Максимально эффективным является креатинкиназный путь ресинтеза АТФ:
КФ + АМФ => АДФ + К;
Энергообеспечение и восстановление [ править | править код ]
Возможны следующие варианты соотношения восстановления и расходования энергии:
- восстановление нормальное, расход нормальный — работоспособность оптимальная,
- восстановление недостаточное, расход нормальный — работоспособность снижена,
- восстановление нормальное, расход повышен — работоспособность снижена.
Таким образом, чтобы сохранить депо энергии постоянным, следует или снизить расход, или увеличить восстановление. При спортивных нагрузках интенсивность расхода увеличивается в десятки раз, в связи с чем требуется ускорить восстановление энергетического депо. Это достигается с помощью правильного питания и фармакологических препаратов-корректоров, которые помогают организму экономить энергию питательных продуктов или ускорять ее «сжигание».
Величины ежедневного расхода энергии в различных видах спорта, а также энергетическая емкость (ккал) основных энергодаюших продуктов у человека, масса тела которого 75 кг, представлены в таблице.
Запасы энергии в организме человека сохраняются и используются по-разному, в частности одни виды спорта, где требуется высокий уровень выносливости, «потребляют» очень много энергии, а другие, например спринт, — значительно меньше. Отсюда следует, что для обеспечения достаточного количества энергии, прежде всего, следует учитывать конкретные условия: для выполнения какой работы и в каком виде спорта требуется энергия и о каком периоде спортивной деятельности идет речь (микро-, мезо- и макроциклы, соревнования и время после них).
В разные периоды подготовки (восстановление или соревнования) расход энергии может составлять от 1500 до 10 000 ккал в день.
Соотношение основных источников энергии для мышечной деятельности в зависимости от вида спорта приведено в таблице. Питание спортсменов в течение учебно-тренировочного процесса, перед соревнованиями, во время и после них кардинально различается.
При больших мышечных нагрузках существенно возрастает потребность в основных пищевых ингредиентах, в том числе в макро- и микроэлементах. Недостаточная насыщенность рациона питания спортсменов макро- и микроэлементами может сопровождаться различными патологическими нарушениями. Так, у спортсменов часто наблюдаются дефицит железа (спортивная анемия), латентные дефициты магния, цинка, хрома, все это приводит к снижению уровня достижений.
Пробелы в понимании принципов фармакологической коррекции физической работоспособности человека связаны с разрывом между результатами, полученными, с одной стороны, на простых биологических моделях в молекулярной биологии, а с другой — при испытаниях (включая микробиопсии с анализом ультраструктуры мышечных волокон, маркерных ферментов митохондрий, особенностей динамики метаболизма, гормонального профиля и др.) лекарственных вешеств на спортсменах высокой квалификации, главными качествами которых являются сила, скорость, выносливость, координация движений и др.
Разработанная около 60 лет назад В. С. Фарфелем (Конради и др., 1934) классификация зон мощности широко применяется как в спортивной практике, так и в теории и методике физического воспитания. Эта классификация была составлена на основе анализа мировых достижений по бегу у мужчин. График зависимости скорость—время включает четыре зоны, названные зонами относительной мощности.
Первая зона характеризуется максимальной мощностью, где время работы составляет не более 20—30 с и лимитируется ресурсами макроэргических фосфатов в мышечных клетках, особенно креатинфосфатом.
Вторая зона (субмаксимальная) — в нее включены средние дистанции, при которых время работы составляет 3—5 мин, а источником энергии является анаэробно-гликолитический процесс.
Третья зона — большой мощности, присущей основной части стайерских дистанций с длительностью бега 20—30 мин. Для нее характерно смешанное энергообеспечение, которое реализуется за счет аэробных и анаэробных процессов.
Четвертая зона — умеренной мощности, включает все суперстайерские дистанции. Время бега составляет несколько часов, а энергообеспечение зависит от аэробных процессов.
Характеристика зон мощности в процессе выполнения физических упражнений
Характеристика физиологических показателей | Виды упражнений | |
---|---|---|
Максимальной анаэробной (анаэробной) | Утомление связано прежде всего с кислородно-транспортной системой, лимитирующей работоспособность. Энергообеспечение осуществляется за счет фосфагенной энергетической системы (АТФ+КФ) при некотором участии лактацидной (гликолитической) системы. «Средняя» лёгочная вентиляция не превышает 20-30% от максимальной. ЧСС повышается ещё до старта — 140-150, а после финиша — 160-180 уд/мин. Концентрация лактата в крови после работы составляет 5-8 ммоль/л. Перед выполнением упражнений несколько повышается концентрация глюкозы в крови. До и в процессе выполнения упражнений в крови повышается концентрация катехоламинов и гормона роста, снижается концентрация инсулина. Кислородный запрос может составлять 7-14 л, а кислородный долг- 6- 12 л, то есть 90-95% от кислородного долга|| Бег на 100 м, спринтерская велогонка на треке, плавание и ныряние на дистанцию до 50 м. Продолжительность — до 30 с | |
Околомаксимальной анаэробной (смешанной) | Утомление связано прежде всего с кислородно-транспортной системой, лимитирующей работоспособность. Предстартовое повышение ЧСС — до 150-160, после финиша пульс достигает 180-190 уд/мин. В процессе выполнения упражнений легочная вентиляция растёт и к завершению достигает 50-60% от максимальной рабочей вентиляции для данного спортсмена (60-80 л/мин.). Возрастает скорость потребления O2 и достигает 70-80% от индивидуального МПК. Концентрация лактата в крови после упражнения высокая — до 15 ммоль/л. Она тем выше, чем больше дистанция и выше квалификация спортсмена. Концентрация глюкозы повышена — до 100- 120 мг% || Бег на 200-400 м, плавание на дистанциях до 100 м, бег на коньках на 500 м. Продолжительность от — 20 до 50 с | |
Субмаксимальной анаэробной | В развитии утомления определяющим фактором является недостаточное снабжение мышц кислородом (энергетическое обеспечение идёт за счёт анаэробного гликолиза). Кислородный запрос может достигать 20-40 л, а уровень энергетических затрат в 4-5 раз превышает максимум аэробного производства энергии. ЧСС, сердечный выброс, лёгочная вентиляция могут быть близки к максимальным значениям для конкретного спортсмена. Концентрация лактата в рабочих мышцах и крови — до 20-25 ммоль/л. Соответственно рН крови снижается до 7,0. Повышается глюкоза в крови — до 1 50 мг%. Высоко содержание в плазме крови катехоламинов и гормона роста. Под влиянием продуктов анаэробного распада меняется проницаемость клеточных мембран для белков, увеличивается их содержание в крови, они могут выходить в мочу, где их концентрация достигает 1 ,5%. | Бег на 800 м, плавание на 200 м, бег на коньках на 1000 и 1500 м, заезды на 1 км в велоспорте (трек). Продолжительность — от 1 до 2 мин Проведя обстоятельный анализ, В. Д. Сонькин и О. В. Тиунова существенно дополнили выдвинутую концепцию и на основании большого статистического материала сделали собственные выводы по различным возрастным группам, а также и по лучшим мировым достижениям. Оказалось, что прирост мировых достижений у мужчин в зонах большой и умеренной мощности более выражен, чем в зонах максимальной и субмаксимальной мощности. Средняя скорость, с которой преодолевается каждая дистанция на 4 % в спринте и на 24 % в стайере, выше, чем это было 50 лет назад. Отмечено также, что различия в выносливости мужчин и женщин тем сильнее, чем ниже мощность нагрузки (скорость бега). Следует отметить, что 60 лет назад современные стимуляторы работоспособности практически не применялись, а последние 10—15 лет они использовались очень широко. Однако разница в достижениях спортсменов зависит не только от фармакологических воздействий. Важным фактором является и совершенствование методики педагогической подготовки. Эти предпосылки необходимы для обсуждения специфики действия различных лекарственных веществ в зависимости от мощности работы, ее продолжительности и энергообеспечения. Вопросам «фармакологической подготовки» во всех цивилизованных странах уделяется значительное внимание в медико-биологическом обеспечении не только спортсменов, но и других контингентов, нуждающихся в этом. Совершенно необходимо рассматривать действие лекарственных веществ с учетом приведенных выше данных. Прежде всего, следует обратить внимание на возможную функциональную недостаточность восполнения энергии для совершения движений. По способу энергообеспечения различают анаэробную, смешанную и аэробную зоны, по длительности работы выделяют стайерские и спринтерские дистанции (от нескольких секунд до нескольких часов), по функции мышц различают силовую, взрывную и скоростную выносливость, по видам спорта — общую и специальную выносливость. Эти факторы должны учитываться спортивным врачом при выборе лекарственных средств, ускоряющих процессы восстановления и повышения работоспособности спортсменов. Десятилетиями не изменялись рекорды в спринтерских дистанциях, несмотря на то что использовались самые современные педагогические приемы, а также адекватное недопинговое фармакологическое обеспечение. У разрядников и лиц, занимающихся оздоровительной физкультурой, при тех же педагогических и фармакологических приемах прирост работоспособности может достичь 10—100 %. Это необходимо учитывать при сопоставлении работоспособности спортсменов различной спортивной квалификации. При планировании экспериментально-клинических исследований получить практическое повышение спортивной работоспособности на 1—2 % можно только в том случае, если прирост работоспособности у тренированных экспериментальных животных составляет 200—400 %. Принципиальные данные по соотношению процента прироста работоспособности у тренированного человека и экспериментальных животных приведены в таблице. Эти многочисленные экспериментально-клинические данные, позволяющие оценить «силу» действия самых различных фармакологических препаратов (допинговой и недопинговой структуры), а также других неспецифических воздействий на организм спортсмена, получены в результате анализа обследования тысяч спортсменов и десятков тысяч экспериментальных животных. По мере эволюции всего живого, появляются произвольные формы движения, которые управляются самим организмом и нуждаются в автономных источниках энергии. Движение формируется в мозгу, а реализуется на периферии, что подразумевает неразрывное единство многоступенчатой системы регуляции в управлении движением, а также энергообеспечения, доставки продуктов метаболизма к работающим мышцам, освобождения от отработанных веществ и их элиминация из организма. Именно эта многоступенчатая система и служит объектом действия (точкой приложения) фармакологических препаратов, которые являются средствами, корригирующими ее функциональное состояние. Как видно из таблицы, прирост работоспособности уменьшается как между тренированными мышами и крысами, так и в зависимости от квалификации тренированных спортсменов. Изучение фактической эффективности действия биологически активных веществ на спортивную работоспособность включает ряд стадий, которые следуют одна за другой и могут служить показателем перспективности практического применения того или иного препарата в спортивной, военной и космической медицине, поскольку выявлен ряд показателей, которые с очевидностью свидетельствуют о том, следует ли продолжать дальнейшие, иногда дорогостоящие, исследования. Это прежде всего:
Таким образом, очевидно, прирост работоспособности спортсменов обратно пропорционально зависит от их спортивной квалификации. Это, скорее всего, определяется степенью адаптации каждого из них к доведенным до предела границам адаптации к физической нагрузке в каждом конкретном виде спорта. Не следует ожидать от спортсмена высокой квалификации резкого прироста работоспособности от любого педагогического приема или вновь изобретенного допинга. Из приведенного выше следует, что заключение о фактической эффективности лекарственного средства может быть объективным при проведении до исследования и после него допинговой экспертизы методом хромато-массспектрометрии повышенной разрешающей способности на наличие или отсутствие психостимуляторов, анаболических стероидов, гормонов пептидной структуры и других препаратов, запрещенных Медицинской комиссией МОК. Названные группы препаратов могут принудительно повышать работоспособность спортсменов и, таким образом, влиять на конечный результат исследования. Источник |