Распредели числа по группам двумя способами

ЗАДАЧИ ПО МАТЕМАТИКЕ
занимательные факты по математике по теме

ЗАДАЧИ, УПРАЖНЕНИЯ, ЗАДАНИЯ НА РАЗВИТИЕ ЛОГИЧЕСКОГО МЫШЛЕНИЯ.

Скачать:

Вложение Размер
zadachi.docx 23.38 КБ

Предварительный просмотр:

Задачи, упражнения, задания на развитие логического мышления

I.Выделение признаков предметов:

1.Из каких цифр состоит число: 27?

2.С какой цифры начинаются числа:14,18,25,46,37,56?

3.Какую форму имеет фигура?

4.Назовите какие-нибудь три признака этой фигуры.

5.Укажите признаки чисел: 2,24,241

6.Назовите признаки треугольника, квадрата, пятиугольника.

7.Укажите признаки чисел: 5, 55, 555.

8.Назовите признаки следующей геометрической фигуры:

9.С какой цифры начинаются числа: 21,215,23,242?

10.Почему данная фигура называется треугольником?

II. Узнавание предметов по заданным признакам

1.Какой предмет обладает одновременно следующими признаками:

а) имеет 4 стороны и 4 угла;

б) имеет 3 стороны и 3 угла.

2.Сколько у фигуры вершин, из скольких отрезков она состоит? Как называется эта фигура?

3.Вставьте пропущенные числа:

г)6,12,18,…30,36,…; и т.д

4.Какие числа пропущены в примерах?

5.Какие числа пропущены в следующих примерах?

III.Формирование способности выделять существенные признаки предметов

1.Треугольник (углы, стороны, чертеж, фанера, картон, площадь) Ответ: (Углы, стороны).

2.Куб (углы, чертеж, камень, сторона) Ответ: (углы, сторона)

Существенные признаки – это такие признаки, каждый из которых, взятый отдельно, необходим, а все вместе достаточны, чтобы с их помощью можно было отличить данный предмет от всех остальных.

IV.Сравнение двух или более предметов

1.Чем похожи числа?

а)7 и 71 б)77 и 17 в)31 и 38 г)24 и 624 д)3 и 13 д)84 и 754

2.Чем отличается треугольник от четырехугольника?

3.Найдите общие признаки у следующих чисел:

а)5 и 15 б)12 и 21 в)20 и 10 г)333 и 444 д)8 и 18 е)536 и 36

4.Прочитайте числа каждой пары. Чем похожи они и чем отличаются?

а)5 и 50 б)17 и 170 в)201 и 2010 г)6 и 600 д)42 и 420 е)13 и 31

5.Даны числа: 12,16,20,24,28,32.

Чем похожи эти числа? Чем они отличаются?

6.Чем отличается четырехугольник от пятиугольника?

В качестве предмета усвоения выступает само действие классификации, когда учащемуся приходится самостоятельно разделять предметы на классы, группы путем выделения в этих предметах тех или иных признаков.

V. Классификация предметов и явлений.

1.Дан набор квадратиков – черных и белых, больших и маленьких.

Разложить квадраты на такие группы:

а) большие и белые квадраты;

б) маленькие и черные квадраты;

в) большие и черные квадраты;

г) маленькие и белые квадраты.

2.Даны кружки: большие и маленькие, черные и белые. Они разделены на 2 группы:

По какому признаку разделены кружки:

в) по цвету и величине (правильный ответ).

3.Даны два пересекающихся круга в прямоугольнике. В них помещены треугольники, большие и

маленькие, черные и белые.

а) покажи, где лежат большие белые треугольники;

б) покажи, где лежат маленькие белые треугольники;

в) покажи, где лежат большие черные треугольники;

г) покажи, где лежат маленькие черные треугольники.

а) разложить карточки с фигурами по форме;

Затем задания можно усложнить:

а) выбери карточки с треугольниками красного цвета;

б) выбери карточки с треугольниками синего цвета;

в) выбери карточки с квадратами…. цвета и т.д.

VI.Упражнения, направленные на формирование умения делить объекты на классы по заданному основанию

1.Раздели на 2 группы следующие числа:

К какой группе отнесешь числа: 16,31,42,18,37?

2.Раздели на 2 группы следующие числа:

3.Назови группы чисел одним словом:

а)2,4,6,8 – это ________________

б)1,3,5,7,9 – это ______________

4.Назови группу чисел одним словом:

в)231,564,872,954 – это ___________

5.Школьникам дается набор карточек.

Задания: разложить карточки на следующие группы:

б) по количеству предметов

6.Дан набор геометрических фигур:

-двух форм (треугольники и квадраты)

-двух цветов (красные и зеленые)

-двух размеров (большие и маленькие)

Задание: разложите фигуры:

Проверка результатов классификации.

1.Следующие числа:1,2,3,5,8,12,16,24,35,48 – распределить на 2 группы:

-однозначные и двузначные:

В какой таблице числа расположены на группы правильно?

а) 1,2,3,5,12 8,16,24,35,48

б) 1,2,3,5,8,16 12,24,35,48

в) 1,2,3,5,8 12,16,24,35,48

г) 2,3,5,8 1,12,6,16,24,35,48

2.Прочитай числа: 22,35,48,51,31,45,27,24,36,20

Разбей эти числа на 2 группы: четные и нечетные

На какой строчке числа распределены по группам правильно?

3.Прочитай числа каждой строки:

Что послужило основанием для такой классификации?

Выбери правильный ответ:

а) числа распределены на четные и нечетные;

б) числа распределены на однозначные, двузначные и трехзначные

распредели на группы двумя способами и т.д.

Из разных цифр я сделал бусы,

А в тех кружках, где чисел нет,

Расставьте минусы и плюсы,

Чтоб данный получить ответ.

Здесь продолжается работа с детьми, закрепляются их знания, формы, величины и цвета предметов.

Большой наблюдательности требуют от учащихся логические цепочки, которые нужно продолжить вправо и влево, если такое возможно. Чтобы выполнить задание, необходимо установить закономерность в записи чисел:

……5 7 9…… (1 3 5 7 9 11 13)

…..5 6 9 10….. (1 2 5 6 9 10 13 14)

…..21 17 13….. (29 25 21 17 13 9 51)

6 12 18………. (6 12 18 24 30 36..)

…..6 12 24…… (36 12 24 48 96…)

0 1 4 5 8 9…….. (014589 12 13 16 17)

0 1 4 9 16……… (0149 16 25 36 49..)

Интересная игра «Лишнее число».

Даны числа: 1,10,6 Какое из них лишнее?

Лишним может быть 1 (нечетное)

Лишним может быть 10 (двузначное)

Лишним может быть 6 (1 и 10 использована 1)

Даны числа:6,18,81 Какое число лишнее?

Сравнение можно провести по четности, нечетности, однозначности, двузначности, участие цифр 1 и 8 в написании. Но кроме того их можно сравнить и по наличию одинаковых делителей.

Сравнивать можно и математические выражения: 3+4 1+6

Что общего? На первый взгляд ничего общего, кроме знака действий, но … первые слагаемые меньше вторых,первые слагаемые – нечетные, а вторые четные. Да и сумма одинаковая.

VIII.Развитию логического мышления способствуют задания, которые можно назвать «Ошибки — невидимки».

На доске записывается несколько математических выражений, содержащих явную ошибку. Задача учеников, ничего не стирая и не исправляя, сделать ошибку невидимой. Дети могут дать разные варианты исправления ошибки.

Задания и варианты исправления ошибок:

Представленные задания, игры, упражнения вызывают у детей большой интерес. А ведь именно он должен лежать в основе обучения младшего школьника. Интерес поддерживает высокий уровень познавательной активности, что в свою очередь способствует развитию интеллектуальных способностей ребенка.

Логические задачи позволяют продолжить занятия с детьми по овладению такими понятиями, как слева, справа, выше, ниже, больше, меньше, шире, уже, ближе, дальше и др.

Примеры логических задач связанных с математикой способствующих развитию логического мышления:

1.На веревке завязали пять узлов. На сколько частей эти узлы разделили веревку?

2.Чтобы распилить доску на несколько частей, ученик сделал на ней шесть отметок. На сколько частей ученик распилит доску?

3. По улице идут два сына и два отца. Всего три человека. Может ли так быть?

4.Термометр показывает три градуса мороза. Сколько градусов покажут два таких термометра?

5.Алеша на дорогу в школу тратит 5 минут. Сколько минут он потратит, если пойдет вдвоем с сестрой?

6. Коля ростом выше Андрея, но ниже Сережи. Кто выше Андрей или Сережа?

7.В прямоугольной комнате следует расставить 8 стульев так. Чтобы у каждой стены стояло по 3 стула.

8.Чтобы сварить 1 кг мяса требуется 1 час. За сколько часов сварится 2 кг мяса?

9.Найдите закономерность и вставьте пропущенное число.

10.Какое число лишнее?

11.Из 5 палочек нужно построить 2 треугольника.

12. Из семи палочек нужно сложить 3 треугольника.

13.Запиши такие двузначные числа, где сумма десятков и единиц равна 5.

14.Запиши такие двузначные числа, в которых разность между числом десятков и единиц равна 6.

15.Установи закономерность и найди недостающее число:

а) 2 5 7 6 1 7 1 4 ? (5)

б) 2 5 9 4 7 3 6 12 ? (12) и т.д.

Комплекс интеллектуальных игр для развития логического мышления детей Игровой тренинг мышления полезен всем учащимся, в особенности тем, которые испытывают заметные трудности в выполнении различных видов учебной работы: понимании и осмыслении нового материала, его запоминании и усвоении, установления связей между различными явлениями, выражении своих мыслей в речи. Комплекс интеллектуальных игр позволяет развивать и совершенствовать мышление. В играх используются задания, составленные на основе простого, хорошо знакомого материала.

Детям предлагается три слова не связанные между собой по смыслу, например: «карандаш», «треугольник», «ученик». Задание: составить как можно больше предложений, которые бы обязательно включали все эти три слова. По времени отводится примерно 10 минут. Эта игра развивает способность устанавливать связимежду предметами и явлениями, творчески мыслить, создавать новые целостные образы из разрушенных предметов.

2.«Поиск общих свойств».

Детям предлагаются два слова, мало связанные между собой. За 10 минут они должны написать как можно больше общих признаков для этих объектов. Например, «ведро», «воздушный шарик». В игре побеждает тот, у кого список общих признаков больше, длиннее. Эта работа необходима для того. Чтобы дети научились вскрывать связи между предметами, а также предельно четко усвоили, что такое существенные и несущественные признаки предметов.

Детям предлагаются любые три слова:

Задание: из предложенных трех слов надо оставить только те два, которые имеют в чем-то сходные свойства, а одно слово – «лишнее», оно не обладает этим общим признаком, поэтому его следует исключить. Пример: шесть, восемнадцать, восемьдесят один.

4.Эта игра развивает способности описывать свойства, сравнивать по определенным параметрам, устанавливать связи, а также переходить от одних связей к другим. Игра формирует установку на то, что возможны совершенно разные способы объединения и расчленения некоторой группы, а поэтому не следует ограничиваться каким-то одним решением. Решений может быть целое множество. Эта игра, следовательно, учит мыслить творчески.

5.«Поиск предмета (чисел и т.д.), обладающих сходными свойствами».

Пишется на доске слово. Например: «квадрат». Время на выполнение этого задания ограничено 5-10 минут. Задание: необходимо написать как можно больше предметов (чего-либо), являющихся аналогом данного слова и указать по какому именно свойству он имеет сходство с названным. Эта игра учит выделять в предмете самые разнообразные свойства, а также оперировать в отдельности каждым из них, формирует способность классифицировать явления (формы и т.д.) по их признакам.

6.«Поиск предметов с противоположными свойствами».

Например слово «круг». Задание детям: напиши как можно больше слов, которые противоположны по признакам записанному на доске.

Эта игра формирует способность изучать свойства, знакомит с такой категорией, как противоположность, что очень важно для развития интеллектуальных способностей ребенка. В работе можно также использовать и другие игры, например: «Поиск предметов (чего – либо) по заданным признакам», «Поиск элементов, объединяющих данные элементы», «Поиск способов применения элементов», «Учимся формировать определения», «Учимся выражать мысли другими словами» и т.д.

Источник

Алгебра

Именная карта банка для детей
с крутым дизайном, +200 бонусов

Закажи свою собственную карту банка и получи бонусы

План урока:

Комбинаторика и ее основные принципы

Очень часто приходится решать задачи, в которых надо посчитать количество возможных вариантов для той или иной ситуации. Например, сколько позиций может возникнуть на шахматной доске после первого хода обоих игроков? Сколько разных паролей длиною в десять символов можно записать, если ни один символ не использовать дважды? Сколько разнообразных комбинаций чисел может выпасть при игре в лотерею «6 из 49»? На все эти вопросы помогает ответить специальный раздел математики, называемый комбинаторикой. Почти всегда комбинаторную задачу можно сформулировать так, чтобы ее вопрос начинался словами «сколькими способами…».

Очевидно, что если в конечном множестве содержится n элементов, то есть ровно n способов выбрать один из них.

Пример. В классе 15 человек. Сколькими способами учитель может назначить одного из них ответственным за чистоту доски?

Ответ. Таких способов ровно 15.

В комбинаторике существует два основных правила. Первое из них называется правилом сложения.

Несмотря на формулировку, по сути это очень простое правило.

Пример. В магазине продается 14 телевизоров Panasonic и 17 телевизоров Sony. Петя хочет купить один телевизор. Сколько у него вариантов покупки?

Решение. По правилу сложения Петя может выбрать один из 14 + 17 = 31 телевизоров.

Ответ: 31 телевизор.

Особое значение имеет второе правило, которое называют правилом умножения.

Проиллюстрируем это правило.

Пример. В секции бадминтона 15 мальчиков и 20 девочек. Тренер должен отправить на соревнования смешанную пару. Сколько вариантов действий у него?

Решение. Тренер может составить 15•20= 300 разнополых пар из своих воспитанников.

Пример. Пете нужно купить технику для компьютера. В магазине продается 20 различных клавиатур, 25 моделей геймпадов и 30 компьютерных мышей. Купить надо по одному экземпляру каждого из этих устройств. Сколько вариантов покупки есть у него?

Решение. Сначала подсчитаем число возможных пар «клавиатура-геймпад». Их количество равно 20•25 = 500. Теперь составим «тройку» из одной из 500 пар и одной из 30 мышей. Число троек равно 500•30 = 15000.

Правила сложения и умножения можно комбинировать.

Пример. Сколько слов не более чем из трех букв можно составить, используя алфавит, содержащий ровно 30 букв?

Решение. Очевидно, что слов из одной буквы можно составить ровно 30. Количество двухбуквенных слов равно количеству пар, которые можно составить из этих букв, то есть 30•30 = 900. Трехбуквенных слов можно составить 30•30•30 = 27000. Всего же слов длиною не более 3 букв будет

30 + 900 + 27000 = 27930

Далее мы изучим основные понятия комбинаторики – перестановки, размещения, сочетания.

Перестановки

Рассмотрим простейшую комбинаторную задачу. На полке расставляют по порядку книги. Их ставят вертикально друг за другом. Сколькими способами можно расставить на полке 2 книги? Очевидно, что двумя:

Либо синяя книжка будет первой слева, либо она будет находиться в конце полки, третьего варианта здесь нет. Здесь условно считается, что варианты, когда между книгами есть зазоры, идентичны вариантам без зазоров:

То есть нас интересует исключительно порядок, в котором стоят книги. Каждый из найденных вариантов называется перестановкой книг. Перестановкой называют любое конечное множество, для элементов которого указан порядок элементов.В комбинаторике перестановки являются одними из основных объектов изучения.

Например, если в забеге на 100 метров стартует 8 спортсменов, то они образуют множество участников забега. После финиша становится известно, кто занял 1-ое место, кто оказался вторым или третьим, а кто стал последним. Результат забега будет перестановкой, ведь он представляет собой список спортсменов с указанием их мест, то есть он определяет порядок между ними.

Вернемся к примеру с книгами. Обозначим количество возможных перестановок n элементов как Рn. Две книжки можно расставить двумя разными способами, поэтому Р2 = 2. Обозначим эти перестановки как АБ и БА. Сколько способов расстановки есть в случае трех книжек? Их все можно получить из вариантов с 2 книжками, добавляя между ними книгами ещё один том:

Видно, что между 2 книгами есть три позиции, на которые можно поставить 3-ий том. Общее количество вариантов равно произведению числа этих позиций и количества вариантов для 2 книг, то есть Р3 = 3•Р2 = 3•2 = 6:

Итак, мы имеем 6 перестановок для 3 книг:

А сколько перестановок существует для 4 книг? Снова-таки, между тремя книгами 4-ый том можно поставить четырьмя способами:

То есть из перестановки трех книг АБВ можно получить 4 перестановки:

Всего существует 6 перестановок для 3 книг (Р3 = 6), и для каждой из них можно построить 4 перестановки из 4 книг. Получается, что общее количество перестановок 4 книг равно

Продолжая подобные рассуждения, можно убедиться, что количество перестановок 5 предметов в 5 раз больше, чем перестановок для 4 объектов:

И вообще, если число перестановок n объектов равно Рn, то количество перестановок (n + 1)объекта равно в (n + 1)раз больше:

При этом отметим, что 1 книгу можно расставить на полке только одним способом:

То есть Р1 = 1. Теперь выпишем значения чисел Р при разном количестве переставляемых предметов, используя формулуРn+1 = (n + 1)Рn

Видно, что количество перестановок n объектов равно произведению всех натуральных чисел от 1 до n. В математике есть специальная функция для вычисления значения этого произведения. Она называется факториалом и обозначается восклицательным знаком.

Например, факториал 6 вычисляется так:

Мы убедились на примере с книгами, что количество перестановок из n различных объектов, которое обозначается как Рn, равно n!.

Относительно факториала надо заметить несколько важных моментов. Во-первых, очевидно, что факториал единицы равен 1:

Во-вторых, иногда в комбинаторных задачах приходится вычислять факториал нуля. По ряду соображений эта величина также принимается равной единице

Объяснить это можно так. Факториал числа можно представить как произведение этого числа и факториала предыдущего числа, например:

5! = 1•2•3•4•5 = (1•2•3•4)•5 = 4!•5

7! = 1•2•3•4•5•6•7 = (1•2•3•4•5•6)•7 = 6!•7

В общем случае формула выглядит так:

Из неё несложно получить, что

Подставив в эту формулу единицу, получим

Пример. Сколькими способами тренер может расставить 4 участников эстафеты 4х400 м по этапам эстафеты?

Решение. Количество таких способов равно числу перестановок 4 различных объектов Р4:

Пример. Вася решил изучать сразу 7 иностранных языков, причем на занятия по каждому из них он собирается выделить ровно один день в неделе. Сколько вариантов расписаний занятий может составить себе Вася?

Решение. В данном случае расписание занятий – это порядок, в котором Вася в течение недели будет изучать иностранные языки, например:

Такое расписание можно описать последовательностью символов:

Ф, Ан, И, К, Я, Ар, П

Создавая расписание, Вася переставляет 7 языков, поэтому общее количество расписаний равно 7!:

Пример. Сколько пятизначных цифр можно записать, используя цифры 0, 1, 2, 3, 4, причем каждую не более одного раза?

Решение. Общее количество перестановок 5 цифр составляет Р5. Однако нельзя начинать запись числа с нуля. Так как, перестановка 12340 – это пятизначное число (двенадцать тысяч триста сорок), а перестановка 03241 – не является пятизначным числом.

Расстановок, начинающихся с нуля, ровно Р4, поэтому общее количество допустимых цифр равно Р5 – Р4:

Р5 – Р4 = 5! – 4! = 120 – 24 = 96

Пример. На полке расставляют 7 книг, однако 3 из них образуют трехтомник. Тома трехтомника должны стоять друг за другом и в определенном порядке. Сколько существует способов расстановки книг?

Решение. Будем считать трехтомник одной книгой. Тогда нам надо расставить 5 книг

Пример. Необходимо расставить 7 книг на полке, но три из них принадлежат одному автору. Их надо поставить друг с другом, но они могут стоять в любом порядке. Сколько возможно перестановок книг.

Решение. Снова будем считать три книги как один трехтомник. Получается, что существует 5! = 120 вариантов. Однако каждому из них соответствует 3! = 6 расстановок книг внутри трехтомника, например:

В итоге на каждую из 120 расстановок приходится 6 вариантов расстановки трехтомника, а общее число расстановок равно, согласно правилу умножения, произведению этих чисел:

Перестановки с повторениями

До этого мы рассматривали случаи, когда все переставляемые объекты были различными. Однако порою некоторые из них не отличаются друг от друга. Пусть на полке надо расставить 3 книги, но две из них одинаковые. Сколько тогда существует перестановок? Общее число перестановок 3 книг составляет 3! = 6:

Здесь одинаковые книги отмечены как А и А1. Очевидно, что 1-ый и 2-ой варианты (А1АБ) и (АА1Б) на самом деле не отличаются друг от друга. В них отличается лишь порядок одинаковых книг А и А1. В первом случае за А1 следует А, а во втором, наоборот, за А следует А1. Тоже самое можно сказать про варианты 3 и 4, 5 и 6. Получается, что все возможные перестановки можно разбить на группы, в которых находятся «перестановки-дубликаты»:

В каждой группе находится ровно по два «дубликата». Почему именно по два? Это число равно количеству перестановок одинаковых книг. Так как одинаковых томов 2, а Р2 = 2, то в каждой группе по 2 «дубликата». Действительно, если бы мы «убрали» с полки все книги, кроме повторяющихся, то там осталось бы только 2 одинаковых тома, которые можно переставить двумя способами.

Для того чтобы найти количество «оригинальных» перестановок, надо их общее количество поделить на число дубликатов в каждой группе.

Пусть теперь надо расставить 4 книги, из которых 3 одинаковы. Обозначим тома как А, А1, А2 и Б. Всего можно записать 4! = 24 перестановки. Однако каждые 6 из них будут дублировать друг друга. То есть их можно разбить на группы, в каждой из которых будет 6 идентичных «дубликатов»:

1-ая группа: БАА1А2, БАА2А1, БА1АА2, БА1А2А, БА2АА1, БА2А1А

2-ая группа: АБА1А2, АБА2А1, А1БАА2, А1БА2А, А2БАА1, А2БА1А

3-ая группа: АА1БА2, АА2БА1, А1АБА2, А1А2БА, А2АБА1, А2А1БА

4-ая группа: АА1А2Б, АА2А1Б, А1АА2Б, А1А2АБ, А2АА1Б, А2А1АБ

И снова для подсчета числа оригинальных перестановок надо из общее число расстановок поделить на количество дубликатов в каждой группе:

Для обозначения перестановок с повторениями используется запись

где n – общее количество объектов, а n1, n2, n3,… nk – количество одинаковых элементов. Например, в задаче с 4 книгами мы искали величину Р4(3, 1), потому что всего книг было 4, но они были разбиты на две группы, в одной из которых находилось 3 одинаковых тома (буквы А, А1, А2), а ещё одна книга (Б) составляла вторую группу. Мы заметили, что для вычисления числа перестановок с повторениями надо общее число перестановок делить на количество дублирующих перестановок. Формула в общем случае выглядит так:

Пример. Вася решил, что ему стоит изучать только два иностранных языка. Он решил 4 дня в неделю тратить на английский, а оставшиеся три дня – на испанский. Сколько расписаний занятий он может себе составить.

Решение. Вася должен расставить 3 урока испанского и 4 урока английского, тогда n1 = 3, а n2 = 4. Общее количество уроков равно 3 + 4 = 7. Тогда

Обратите внимание, что для удобства при делении факториалов мы не вычисляли их сразу, а пытались сократить множители. Так как в ответе любой комбинаторной задачи получается целое число, то весь знаменатель дроби обязательно сократится с какими-нибудь множителями в числителе.

Пример. У мамы есть 3 яблока, 2 банана и 1 апельсин. Эти фрукты она распределяет между 6 детьми. Сколькими способами она может это сделать, если каждый должен получить по фрукту?

Решение. Всего есть три группы фруктов. В первой находится 3 яблока, поэтому n1 = 3. Во второй группе 2 банана, поэтому n2 = 2. В третьей группе только 1 апельсин, поэтому nk = 1. Общее число фруктов равно 6. Используем формулу:

В знаменателе формулы для перестановок с повторениями мы записываем число объектов в каждой группе одинаковых предметов. Так, если переставляются 3 яблока, 2 банана и 1 апельсин, то в знаменателе мы пишем 3!•2!•1!. Но что будет, если в каждой группе будет находиться ровно один уникальный объект? Тогда мы запишем в знаменателе произведение единиц:

В итоге мы получили ту же формулу, что и для перестановок без повторов. Другими словами, перестановки без повтора могут рассматриваться просто как частный случай перестановок с повторами.

Размещения

Пусть в футбольном турнире участвуют 6 команд. Нам предлагают угадать те команды, которые займут призовые места (то есть первые три места). Сколько вариантов таких троек существует?

Сначала запишем ту команду, которая выиграет турнир. Здесь есть шесть вариантов, по количеству участвующих команд. Запишем эти варианты:

Далее выберем один из вариантов и для него укажем серебряного призера соревнований. Здесь есть только 5 вариантов, ведь 1 из 6 команд уже записана на 1-ом месте:

Такую пятерку можно записать для каждого из шести вариантов того, кто станет чемпионом. Получается, что всего есть 6•5 = 30 пар «чемпион – серебряный призер». Наконец, для одной такой пары можно записать 4 варианта того, кто окажется третьим (две команды писать нельзя, так как они уже записаны на первых двух строчках):

Для каждой пары можно записать 4 тройки призеров. Так как число пар «чемпион – вице-чемпион» равно 6•5 = 30, то число троек составит 6•5•4 = 120.

В данном случае из некоторого множества команд мы выбрали несколько и расположили их в каком-то порядке. То есть мы выбрали упорядоченное множество. В комбинаторике оно называется размещением.

Если общее число команд обозначить как n (в этом примере n = 6), а количество упорядочиваемых команд равно k, то количество таких размещений в комбинаторике обозначается как

В примере с командами количество размещений равнялось 120:

Читается эта запись как «число размещений из 6 по 3 равно 120».

Для нахождения этого числа мы перемножили k (3)множителей. Первый из них был равен n(6), так как каждая из n команд могла занять первая место. Второй множитель был равен (n– 1), так как после определения чемпиона мы могли поставить на вторую позицию одну из (n– 1) команд. Третий множитель был равен (n– 2). По этой логике каждый следующий множитель будет меньше предыдущего на единицу. Например, чтобы вычислить число размещений из 7 по 4, надо перемножить 4 множителя, первый из которых равен 7, а каждый следующий меньше на 1:

Однако математически удобнее представлять это произведение как отношение двух факториалов. Для этого умножим количество размещений на дробь 3!/3!, равную единице. Естественно, число размещений из-за умножения на единицу не меняется:

Число 3 в данном случае можно получить, если из 7 вычесть 4. В общем случае из числа n надо вычесть число k. Тогда формула для вычисления количества размещений примет вид:

Пример. В программе 8 «А» класса 12 различных предметов. В понедельник проводится 5 занятий подряд. Сколько существует вариантов расписаний для класса, если в течение понедельника нельзя проводить два одинаковых урока?

Решение. Для составления расписания нужно выбрать 5 предметов и расставить их по порядку. Поэтому нам необходимо найти размещение из 12 по 5:

Пример. В вагоне 10 свободных мест. В него зашло 6 пассажиров. Сколькими способами они могут расположиться в вагоне?

Решение. Из десяти мест надо выбрать шесть и указать для каждого, какому пассажиру оно соответствует. То есть каждый вариант рассадки пассажиров – это размещение из 10 по 6. Найдем их количество:

Заметим, что перестановка – это частный случай размещения, когда k = n. Действительно, если нам надо указать тройку призеров турнира, в котором участвуют 6 команд, то мы указываем размещение из 6 по 3. Но если мы указываем для каждой из 6 команд, какое место она займет в чемпионате, то это размещение из 6 по 6. С другой стороны, это расстановка одновременно является и перестановкой 6 команд. Убедимся, что в этом частном случае формула для подсчета количества размещений покажет тот же результат, что и формула для перестановок

Для примера с 6 командами это будет выглядеть так:

Здесь мы использовали тот факт, что факториал нуля принимается равным единице. Данное рассуждение можно, наоборот, использовать для того, чтобы доказать, что факториал нуля – это единица.

Сочетания

Выбирая размещение, мы должны были выбрать из множества несколько объектов и упорядочить их. В частности, мы выбирали три команды из шести и указывали, какая из них будет первой, какая второй, а какая третьей. Поэтому размещения «Локомотив, Зенит, Краснодар» и «Локомотив, Краснодар, Зенит» отличались друг от друга.

Однако порою этот порядок не имеет значения. Так, существует известная лотерея, где предлагается угадать 7 чисел из 49, которые выпадут во время розыгрыша из барабана. При этом порядок их выпадения не играет никакой роли. Игрок, выбирая эти 7 чисел, с точки зрения математики формирует сочетание из 49 по 7.

Количество возможных сочетаний из n по k обозначается буквой С:

Для вычисления количеств сочетаний из n по k сначала найдем количество аналогичных размещений. Оно вычисляется по формуле:

Однако ясно, что, как и в случае с перестановками с повторениями, некоторые сочетания мы посчитали несколько раз. Вернемся к примеру с командами. Если мы выбрали команды Л (Локомотив) , З (Зенит) и К (Краснодар), то мы можем составить ровно 3! = 6 размещений из них:

Однако все они соответствуют только одному сочетании – ЛКЗ. Таким образом, считая количество размещений, мы посчитали каждое сочетание не один, а 3! раз. Поэтому для нахождения количества сочетаний в комбинаторике надо поделить число размещений на число перестановок k элементов:

Эта формула связывает важнейшие понятия комбинаторики – перестановки, сочетания и размещения. Подставим в неё формулы для размещений и перестановок и получим:

Пример. Сколько троек призеров турнира можно составить, выбирая три футбольные команды из шести?

Решение. Посчитаем число сочетаний из 6 по 3:

Пример. Сколько комбинаций чисел может составить игрок, играющий в лотереи «5 из 36», «6 из 45», «7 из 49»?

Решение. В каждом из этих случаев игрок выбирает сочетание нескольких чисел. Посчитаем их число:

Ответ: 376992; 8145060; 85900584

Пример. На плоскости отмечены 8 точек, причем никакие три из них не лежат на одной прямой. Сколько различных прямых можно провести через них? Сколько треугольников и четырехугольников можно построить с вершинами в этих точках?

Решение. Для того чтобы провести прямую, достаточно выбрать любые 2 точки из 8. Общее количество прямых будет равно числу сочетаний из 8 по 2:

Заметим принципиальную важность того условия, что никакие три точки не лежат на одной прямой. Оно гарантирует, что при выборе двух различных точек мы будем получать различные прямые. Если бы, например, точки АВС лежали бы на одной прямой, то при выборе сочетаний АВ, ВС и АС мы получали бы одну и ту же прямую:

Это же условие гарантирует, что, выбрав любые 3 и 8 точек, мы сможем построить треугольник с вершинами в этих точках, а выбрав 4 точки, получим четырехугольник. Поэтому для подсчета количества треугольников и четырехугольников следует искать число сочетаний по 3 и 4:

Ответ: 28 прямых, 56 треугольников и 70 четырехугольников.

Пример. В одной урне находится 10 различных шаров с номерами от 0 до 9, а в другой – 8 различных шаров с первыми восемью буквами алфавита. По условиям лотереи ведущий вытаскивает из первой урны два шара с числами, а из второй – три шара с буквами. Для победы в лотерее надо угадать выпавшие шары. Сколько комбинаций шаров может выпасть в игре?

Решение. Посчитаем отдельно, сколькими способами можно выбрать 2 шара с цифрами из 10 и 3 шара с буквами из 8:

По правилу умножения мы должны перемножить эти числа, чтобы найти общее количество возможных вариантов:

Заметим, что выбирая, например, сочетание из 49 по 7, мы одновременно выбираем и сочетание из 49 по 49 – 7 = 42. Действительно, игрок, обводящий в кружок в лотерейном билете свои 7 счастливых чисел, одновременно и определяет остальные 42 числа, какие числа он НЕ считает счастливыми. Для наглядности запишем число сочетаний в обоих случаях:

Получили одну и ту же дробь, в которой отличается лишь последовательность множителей в знаменателе. Можно показать, что и в общем случае число сочетаний из n по k совпадает с количеством сочетаний из n по (n– k):

Источник

Читайте также:  Способы применения цинковой пасты от прыщей
Оцените статью
Разные способы