- Раскисление
- Раскисление стали
- Стадии процесса раскисления:
- Способы раскисления стали:
- Осаждающее раскисление
- Диффузионное раскисление
- Обработка синтетическими шлаками (способ раскисления)
- Электрошлаковый переплав (способ раскисления)
- Вакуумное раскисление
- Способы раскисления стали
- Раскисление металла способы раскисления
- Раскисление металла способы раскисления
- Способы раскисления стали
Раскисление
Раскисление металла – одна из основных операций рафинирования металла, заключающаяся в удалении из жидкого металла кислорода, присутствующего в виде оксидов, присадкой в металл раскислителей (восстановителей) – веществ, обладающих способностью соединяться с кислородом. От раскисления металлов в большой степени зависит их качество. Хорошими раскислителями являются C, Si, Mn, используемые в виде ферросплавов, в том числе комплексных раскислителей (силикомарганец, силикокальций и другие). Продукты раскисления всплывают в шлак либо удаляются в виде газа (оксид углерода).
Восстановительный процесс – физико-химический процесс получения металлов из оксидов отщеплением и связыванием кислорода восстановителем – веществом, способным соединяться с кислородом. Типичным восстановительным процессом является доменный процесс, в котором железо восстанавливается из руд главным образом углеродом или его оксидом.
Раскисление стали
Раскисление стали — это снижение содержания кислорода в стали до уровня, исключающего возможность окислительных реакций в слитке. Образующиеся при этом твёрдые, жидкие или газообразные продукты раскисления стали необходимо удалить до затвердевания слитка, так как они снижают качество стали. Содержание кислорода после раскисления стали снижается на порядок.
Стадии процесса раскисления:
- Растворение раскислителей в жидком металле.
- Реакции между кислородом и раскислителем.
- Образование зародышей, рост и выделение продуктов раскисления.
Способы раскисления стали:
- Осаждающее раскисление;
- Диффузионное раскисление;
- Специальные способы раскисления (обработка синтетическими шлаками; раскисление в вакууме).
Осаждающее раскисление
Такой способ раскисления, как осаждающее раскисление осуществляется при помощи элементов, обладающих большим сродством к кислороду, чем Fe. В зависимости от ситуации в качестве раскислителей применяют марганец, кремний, алюминий или комплексные раскислители.
Диффузионное раскисление
Выражение «диффузионное» не вполне соответствует существу процесса этого способа раскисления. Более точный термин — «экстракционное раскисление». При диффузионном раскислении содержание кислорода снижается за счёт раскисления шлака. Раскислителями могут быть C, Si, Al. Основная задача — снижение FeO в шлаке, что усиливает диффузию кислорода из металла в шлак (правило распределения Нернста).
Этот способ раскисления применяется только в дуговых печах, где нет горящих газов.
Обработка синтетическими шлаками (способ раскисления)
Широко применяется в практике обработка расплава железа синтетическими шлаками. В дуговой печи наводят шлак из Al2O3 и CaO; шлак заливают в ковш, туда же с высоты 3-6 м выливают струю металла из печи. Этот способ раскисления позволяет снизить содержание кислорода и серы.
Электрошлаковый переплав (способ раскисления)
Основная цель электрошлакового переплава (ЭШП) — очистка стали от серы и неметаллических включений в процессе расплавления исходного материала в разогретой шлаковой ванне. Кроме того, за счёт затвердевания в водоохлаждаемом кристаллизаторе можно управлять структурой слитка.
Вакуумное раскисление
Вакуумное раскисление основывается главным образом на реакции обезуглероживания, так как в вакууме раскислительная способность углерода значительно возрастает.
Автор обзора: Корниенко А.Э. (ИЦМ)
Лит.:
- Иванов В.Н. Словарь-справочник по литейному производству. – М.: Машиностроение, 1990. – 384 с.: ил.
- Циммерман Р., Гюнтер К. Металлургия и материаловедение. Справ изд. Пер. с нем. М.: Металлургия, 1982. 480 с.
- Куликов И.С. Раскисление металлов. — М.: Металлургия, 1975. с. 504.
Конкурс «Я и моя профессия: металловед, технолог литейного производства». Узнать, участвовать >>> —>
Источник
Способы раскисления стали
Технологическую операцию, при которой растворенный в металле кислород переводится в нерастворимое в металле соединение или удаляется из металла, называют раскислением. Применяют следующие способы раскисления стали: глубинное (донное), диффузионное, обработка синтетическими шлаками, обработка вакуумом.
Глубинное раскисление заключается в переводе растворенного в стали кислорода в нерастворимый окисел введением в металл элемента-раскислителя. Элемент-раскислитель должен характеризоваться большим сродством к кислороду, чем железо. В результате реакции образуется малорастворимый в металле окисел, плотность которого меньше плотности стали. Полученный таким способом «осадок» всплывает в шлак. В качестве раскислителей обычно применяют FeMn, FeSi, Al, сплавы редкоземельных металлов.
Раскисление протекает по следующим реакциям:
При этом методе раскисления невозможно получить сталь, совершенно чистую от неметаллических включений, что является существенным недостатком, однако этот метод получил распространение как самый простой и дешевый.
При диффузионном раскислении раскислению подвергают шлак, уменьшая его окисленность и соответственно окисленность металла. При диф раскислении на шлак дают смеси, в состав которых входят сильные восстановители: углерод (кокс, древесный уголь, электродный бой), кремний (FeSi), алюминий. Окислы железа в шлаке взаимодействуют с раскислителями по реакции:
При этом и концентрация, и активность окислов железа в шлаке уменьшается , а это в свою очередь вызывает уменьшение концентрации и активности кислорода в металле, т.к. отношение а(FeO)/a[o] при данной температуре является величиной постоянной. При диффузионном раскислении металл содержит меньше неметаллических включений чем при донном раскислении однако ему присущи следующие недостатки: низкая скорость протекания процесса, продолжительность плавки возрастает, падает производительность агрегата, возрастает износ футеровки.
В качестве раскислителей применяют FeMn, FeSi, Al, а также комплексные раскислители: SiMn, SiCa, сплав АМС, сплав КМК. Наибольшей раскислительной способностью обладает Са, наименьшей Mn.
Источник
Раскисление металла способы раскисления
Наличие искусственных водоемов на приусадебных участках уже давно перестало быть редкостью. К настоящему времени они стали не только красивыми и функциональными, но и.
Скрытые петли – это фурнитура, которая позволяет сделать зазор между полотном и коробом минимальным, а эксплуатацию двери удобной, долговечной и надежной.
Если вы новичок в сварке и только начинаете свой путь, то сегодняшний огромный рыночный ассортимент продукции сварочных аппаратов, поначалу может привести в.
Из одного деревянного бруса сразу несколько досок выпиливаются с помощью многопильных деревообрабатывающих станков. Формы и размеры заготовок задаются заранее. По.
Долговечность и устойчивость строения зависит от качества и прочности фундамента. Специальные блоки нередко используют для того, чтобы создать надежное основание. Со.
Натяжной потолок — отличное решение для современного интерьера, имеющее целый ряд преимуществ.
В сохранности стремятся сохранить свое имущество все люди. Только злые собаки и надежные замки раньше были в распоряжении владельцев частных домов. Дополнительную охрану.
В современных интерьерах все чаще можно увидеть стеклянные элементы. Это козырьки, душевые кабины, перегородки, двери и другие конструкции.
Источник
Раскисление металла способы раскисления
12.4 Основные способы раскисления металла |
Для понижения концентрации растворенного в металле кислорода в промышленных условиях чаще других используют следующие три различающихся по принципу удаления кислорода из металла способа раскисления: осаждающее, экстракционное (диффузионное) и вакуумно-углеродное.
Осаждающее раскисление заключается в том, что основную часть растворенного в металле кислорода переводят в нерастворимые оксиды элементов-раскислителей, которые вводят непосредственно в жидкий металл. Плотность абсолютного большинства оксидов меньше плотности жидкой стали, поэтому они всплывают из металла и частично удаляются в шлак.
Этот способ раскисления стали получил наиболее широкое распространение главным образом благодаря простоте его реализации. Главным его недостатком является то, что за время отстаивания ковша из металла всплывают только наиболее крупные неметаллические включения. Значительная часть образовавшихся при раскислении неметаллических включений остается в стали вплоть до ее затвердевания.
Экстракционное раскисление состоит в том, что металл выдерживают в контакте со шлаком, содержание оксидов железа в котором во много раз меньше, чем в шлаке периода окислительного рафинирования. При этом по мере приближения системы к состоянию равновесия концентрация кислорода в металле уменьшается, приближаясь к равновесной с новым раскислительным шлаком. Этот процесс протекает путем диффузионного переноса части кислорода из металла в шлак, поэтому этот способ обработки называют также диффузионным раскислением.
Преимущество экстракционного раскисления перед осаждающим состоит в том, что металл не загрязняется продуктами раскисления. Однако этот способ обработки требует дополнительного расхода шлакообразующих материалов, энергии и значительно увеличивает продолжительность плавки.
Вакуумно-углеродное раскисление основано на смещении равновесия реакции
в направлении образования дополнительного количества оксида углерода при понижении парциального давления СО в продуктах реакции.
Главным преимуществом вакуумно-углеродного раскисления является то, что газообразные продукты реакций полностью удаляются из металла. Однако реализация этого способа обработки связана с необходимостью наличия достаточно сложного и дорогостоящего оборудования.
Источник
Способы раскисления стали
Во всех способах производства стали — мартеновском, конвертерном, электросталеплавильном —по ходу плавки по мере выгорания примесей (кремния, марганца и углерода) имеет место постепенное повышение содержания кислорода. В конце окислительного периода плавки содержание растворенного кислорода в жидком металле определяется в основном концентрацией углерода, причем максимальных значений кислород достигает при низком содержании углерода. Задачей раскисления является снижение концентрации растворенного кислорода и возможно полное удаление из металла продуктов раскисления. Оставшийся в металле кислород в неактивной форме в гораздо меньшей степени сказывается на ухудшении свойств готовой стали.
В металлургической практике применяются следующие способы раскисления стали:
- осаждающее раскисление;
- диффузионное раскисление;
- раскисление синтетическими шлаками;
- раскисление в вакууме.
Осаждающее раскисление является наиболее распространенным способом, при котором снижение концентрации растворенного в жидком металле кислорода достигается связыванием его элементами-раскислителями (Mn, Si, Ti, Zr, Al, Ca, РЗМ), обладающими большим сродством к кислороду, чем железо.
При присадке раскислителя Е в металле имеет место взаимодействие х [O] + у [Е] = EyOX (г, ж, тв) с образованием окисла элемента-раскислителя в газообразном, жидком или твердом состоянии, нерастворимого в стали. Степень понижения концентрации растворенного кислорода обусловлена раскислительной способностью элемента-раскислителя, обычно определяемой концентрацией растворенного в жидком железе кислорода, находящегося в равновесии с определенной концентрацией элемента-раскислителя. С увеличением сродства элемента-раскислителя к кислороду растет его раскислительная способность.
Термодинамические данные реакций раскисления приведены в табл.
Образующиеся продукты раскисления в силу их меньшей плотности в той или иной степени удаляются из металла. Полнота очищения жидкой стали от продуктов раскисления зависит от величины, состава и физико-химических свойств частиц, способности их к укрупнению, от вязкости и температуры металла. Наиболее благоприятные условия для укрупнения частиц и их всплывания из жидкой стали создаются при образовании жидких, легкоплавких продуктов раскисления, что свойственно окислам элементов (марганца, кремния) с низкой раскислительной способностью. С повышением раскислительной способности элементов (алюминия, титана, циркония) обычно повышается температура плавления частиц; целесообразно применение комплексных раскислителей Si—Mn, Si—Ca, Ca—Al, Al—Mn—Si, Al—Si—Ca и др.), при действии которых образуются сравнительно легкоплавкие, способные к укрупнению и быстрому всплыванию продукты раскисления.
Наиболее широко в качестве раскислителей применяются марганец, кремний (в виде ферросплавов) и алюминий. Марганец является сравнительно слабым раскислителем, однако он применяется при раскислении всех сталей и незаменим при производстве кипящей стали. При раскислении марганцем, в зависимости от его содержания в жидкой стали образуются растворы х MnO • у FeO в твердом или жидком состоянии. По мере повышения остаточного марганца в металле возрастает MnO в продуктах раскисления, вплоть до образования свободной MnO.
Кремний — более сильный раскислитель. Продуктами раскисления кремния, при повышении содержания его в стали являются жидкие силикаты железа вплоть до твердого кремнезема. При совместном раскислении марганцем и кремнием образуются силикаты марганца и железа, состав которых зависит от соотношений концентрации марганца, кремния и кислорода. В присутствии марганца раскислительная способность кремния повышается.
Алюминий является весьма активным раскислителем. При введении алюминия в избытке, что обычно имеет место в практике раскисления, образуются твердые мелкодисперсные частицы глинозема. При малой добавке алюминия в металл образуются частицы FeО-Аl2O3.
Диффузионное раскисление, основанное на законе распределения закиси железа между металлом и шлаком, сводится к раскислению шлака. Уменьшение концентраций FeO в шлаке за счет его раскислении вызывает диффузию кислорода из металла в шлак до равновесного распределения между обеими фазами при данной температуре.
Раскисление шлака практически осуществляется путем введения на его поверхность порошкообразных раскислительных смесей, содержащих кокс, древесный уголь, ферросилиций, алюминий. При диффузионном раскислении металл не загрязняется продуктами раскисления, но для его осуществления необходимы восстановительная атмосфера и длительное время, что сопряжено с понижением производительности печи. Этот способ раскисления применяется при плавке высококачественной стали в электродуговых печах, где без особых затруднений можно создавать восстановительную атмосферу.
Раскисление стали синтетическими шлаками (кислыми или основными с малым содержанием FeO) также основано на экстрагировании FeO из металла в соответствии с законом распределения. При этом способе раскисления сталь выливается в ковш с жидким синтетическим шлаком. Благодаря эмульгированию шлака раскисление протекает с большой скоростью. При обработке стали синтетическими основными шлаками, кроме раскисления, возможно обессеривание металла.
Практика раскисления. В зависимости от степени раскисленности стали различают кипящую, полуспокойную и спокойную сталь.
Кипящая сталь — частично раскисленная (марганцем и углеродом) сталь, застывающая в изложницах с обильным выделением газов, являющихся в основном (до 90% СО) продуктом взаимодействия растворенных в жидком металле углерода и кислорода. Интенсивность газовыделения предопределяет строение и качество слитка кипящей стали. Кипящую сталь выплавляют в мартеновских печах и конвертерах с содержанием углерода от 0,02 до 0,27 и редко до 0,35% и содержанием марганца до 0,6%. Основным раскислителем кипящей стали является углеродистый 75%-ный ферромарганец, который вводится в печь или в ковш. Экономически более целесообразно раскисление в ковше, при этом снижается расход ферромарганца (до 25%) и сокращается продолжительность плавки (на 5—15 мин). Угар марганца при раскислении в ковше составляет 20—40%, при раскислении в печи до 35—70%.
Полуспокойная сталь по степени раскисленности занимает промежуточное место между кипящей и спокойной сталью. Количество раскислителей, добавляемых в металл, недостаточно для полного предотвращения выделения газов, поэтому в слитке полуспокойной стали наблюдаются газовые пузыри и слаборазвитая усадочная раковина.
Полуспокойная сталь выплавляется в мартеновских печах и конвертерах, она содержит 0,1—0,3% С; 0,35—0,85% Mn и до 0,15% Si. Раскисление полуспокойной стали производится частично в печи (ферромарганцем, доменным ферросилицием) и затем в ковше (ферросилицием, карбидом кремния, алюминием, ферротитаном) или же только в ковше. Иногда добавляют небольшое количество алюминия (0,02—0,5 кг/т) в изложницу, вводя его в центровую в процессе разливки.
Спокойная сталь раскисляется избытком сильных раскислителей, исключающим возможность взаимодействия растворенного кислорода с углеродом во время охлаждения и затвердевания металла в изложнице.
Многообразные по химическому составу марки спокойной стали производятся в мартеновских и электродуговых печах и конвертерах.
Практика раскисления спокойной стали весьма различна. Во всех методах стремятся получить хорошо раскисленную сталь с минимально возможным содержанием оксидных включений, наличие которых сильно сказывается на качестве металла. На загрязненность стали оксидными включениями определенным образом влияет способ и последовательность введения раскислителей. В качестве раскислителей применяются углеродистый и малоуглеродистый ферромарганец, зеркальный чугун, доменный и 45%-ный ферросилиций, силикомарганец, алюминий, ферроалюминий, силикокальций, силикоалюминий, альсикаль, карбид кремния, силикоцирконий и др. Предварительное раскисление производится в печи слабыми раскислителями, более сильные вводятся в ковш. Иногда сталь раскисляют в ковше, без предварительного раскисления кремнием в печи.
Для уменьшения загрязненности стали оксидными включениями и для более равномерного их распределения в последнее время применяют введение алюминия, силикокальция или альсикаля в ковш при помощи специальных трубок. Предложен также метод раскисления стали в ковше жидким алюминием.
Источник