- Пример расчета медианы
- Понятие медианы
- Формула расчета медианы
- Пример расчета медианы в интервальном вариационном ряду
- Расчет медианным способом это
- Медиана
- Понятие медианы
- Формула для расчета медианы
- Пример вычисления медианы
- Область применения медианы
- Особенности медианы
- Медиана в статистике
- Формула медианы
- Расчет медианы в Excel
Пример расчета медианы
Пример расчета медианы
План (содержание) работы Пример расчета медианы:
Понятие медианы
При анализе различных статистических данных часто возникает необходимость рассчитать различные показатели центра распределения, одним из которых является медиана. Медиана — это один из показателей исследуемого признака, который делит изучаемую совокупность на две равные части, при этом одна часть содержит наблюдения, имеющие значения меньше медианы, а другая состоит из признаков, имеющих значения больше медианного. В силу специфики вычисления медиану считают более достоверной характеристикой типичной величины изучаемого признака, чем, например, средняя арифметическая. Это связано с тем, что рассматриваемый показатель имеет свойство независимости от значений признаков на краях ранжированной совокупности. Нечувствительность к неоднородности изучаемой совокупности и возможным ошибкам выборки при её формировании также называют робастность.
Формула расчета медианы
Применяемая для расчета медианы формула зависит от типа ряда распределения. Например, в неинтервальном ряду с четным количеством наблюдений медиана будет являться средним арифметическим значением из двух центральных величин, т.е. если совокупность состоит из десяти элементов, то искомый показатель будет равняться среднему значению пятого и шестого элемента. В случае, когда ряд неинтервальный и количество наблюдений нечетное, то медианным будет значение признака, находящегося в центре ранжированного ряда, т.е. для 11 элементов это будет шестой элемент.
В интервальном ряду распределения для вычисления медианы используют следующую формулу:
Формула расчета медианы
где хО — нижняя граница медианного интервала;
i — ширина медианного интервала;
SМe-1 — накопленная частота интервала, предшествующего медианному;
fМe — частота медианного интервала.
В том случае, если вариационный ряд является дискретным, то медианным будет величина признака в той группе, в которой накопленные частоты превысили половину количества единиц исследуемой совокупности.
Пример расчета медианы в интервальном вариационном ряду
В качестве исходных данных для расчета и анализа медианы используем статистическую группировку банков по величине собственных средств. Таким образом, расчет искомого показателя осуществим на основе следующего интервального ряда распределения:
Источник
Расчет медианным способом это
Медиана (М — это значение варьирующего признака, которое делит ряд распределения на две равные части по объему частот или частностей. Определение медианы возможно лишь в том случае, когда измерения выполнены не ниже шкалы порядка .
Способы вычисления медианы:
1. Если данные содержат нечетное число различных значений и они представляют упорядоченный ряд, то медианой является среднее значение ряда. Например, в ряду 5, 8, 12, 25, 30 медиана = 12.
2. Если данные содержат четное число различных значений, упорядоченных в ряд, например 3, 8, 16, 17, то медианой является значение, лежащее посередине между двумя центральными значениями: = (8 + 16) : 2 = 12.
3. Для более точного определения медианы существует специальная формула:
где — начало класса, в котором находится Медина; — общее число данных; — величина классового промежутка; — сумма частот классов; — частота медианного класса.
Расчеты поясним на конкретном примере (взять ксерокопию одной из экзаменационных ведомостей):
1. Допустим, что на экзамене студенты получили следующие оценки: 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3 , 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5.
2. Если определить медиану простым способом, то она будет равняться 3. Это значение занимает центральное положение в ряду из 23 данных (значение медианы подчеркнуто). Т.о., = 3.
3. Составим для приведенного выше ряда таблицу частот каждой оценки:
Оценка | Частота оценок |
2 4 | |
Всего: | = 23 |
Итак, ряд подразделяется на четыре класса: «2», «3», «4», «5». Величина классового промежутка между ними равна единице ( = 1).
Сумма частот оценок-двоек, предшествующих медианному классу равно 4 ( = 4).
Частота медианного класса = 8.
4. Производим расчеты:
Практическое задание : студенты подразделяются на группы, каждая из которых письменно готовит ряд значений; далее группы студентов обмениваются значениями и определяют медиану.
Источник
Медиана
В статистических исследованиях довольно широко применяются средние величины. Их нахождение позволяет выявить типичное значение признака исследуемой совокупности. Например, типичный уровень доходов покупателей или возраст большинства клиентов компании. При этом вычисление, к примеру, среднего арифметического не всегда уместно.
Представим такую ситуацию: мы опросили 10 человек на предмет их уровня доходов. У 9-х доходы оказались примерно одинаковыми и составили 10 тыс. руб. Что касается 10-ого опрошенного, то оказалось, что его доход равняется 410 тыс. руб. в месяц. Если мы вычислим простое среднее арифметическое, то типичный доход будет равняться 50 тыс. руб.! Но это явно не так. В таких ситуациях более объективную и правдоподобную картину дает вычисление моды или медианы, которые относятся к структурным средним показателям.
Понятие медианы
Медиана (Me) — значение признака в исследуемом ряду величин, которое делит этот ряд на две равные части.
То есть половина (50%) всех значений в исследуемом ряду будет меньше медианы, а другая половина — больше ее. Поэтому медиану еще называют 50-й перцентиль или квантиль 0,5.
Формула для расчета медианы
Если значений немного, то медиану можно определить «на глазок». Для этого достаточно расположить все значения в порядке возрастания и найти середину.
Если число случаев четное и в центре ряда находятся два разных числа, то медианой будет среднее между ними (даже если такого значения нет в самом ряду исследуемых случаев). Например, в ряду 1 2 3 4 5 6, медианой будет 3,5.
Для нахождения медианы в более сложных случаях (по интервальным рядам) используется специальная формула:
Xme — нижняя граница медианного интервала (того интервала, накопленная частота которого превышает полусумму всех частот);
ime — величина медианного интервала;
f — частота (сколько раз в ряду встречается то или иное значение);
Sme-1 — сумма частот интервалов предшествующих медианному интервалу;
fme — число значений в медианном интервале (его частота).
Пример вычисления медианы
Был проведен опрос среди покупателей с целью выяснить их типичный возраст. По результатам опроса было установлено, что: 25 покупателей имеют возраст до 20 лет; 32 покупателя — 20-40 лет; 18 покупателей — 40-60 лет; 15 покупателей — свыше 60 лет. Найдем медиану.
Сначала находим медианный интервал. Для этого вычисляем сумму частот: 25 + 32 + 18 + 15 = 90. Половина этой суммы — 45. Это соответствует возрастной группе 20-40 лет (т. к. полученная полусумма частот — 45, и накопленная частота 1-й группы меньше ее, а 3-ей — больше). Тогда нижняя граница медианного интервала — 20 (лет), а величина медианного интервала — 20 (40 лет за вычетом 20). Сумма частот интервалов предшествующих медианному интервалу — 25. Число значений в медианном интервале — 32 (количество покупателей в возрасте 20-40 лет).
Расчетное значение медианы — 32,5. Округив его, получим средний возраст покупателя — 33 года.
Область применения медианы
При вычислении типичного признака неоднородных рядов, имеющих «выбросы» — значения во много раз отличающиеся от других значений ряда.
Особенности медианы
- Медиана обладает высокой робастностью, то есть нечувствительностью к неоднородностям и ошибкам выборки;
- Сумма разностей между членами ряда выборки и медианой меньше, чем сумма этих разностей с любой другой величиной. В том числе с арифметическим средним.
- Медиана // Википедия. URL: http://ru.wikipedia.org/wiki/Медиана_(статистика) (дата обращения: 23.10.2013)
- Минашкин В. Г. и др. Курс лекций по теории статистики. – М.: МЭСИ, 2001.
© Копирование любых материалов статьи допустимо только при указании прямой индексируемой ссылки на источник: Галяутдинов Р.Р.
Источник
Медиана в статистике
Центральную тенденцию данных можно рассматривать не только, как значение с нулевым суммарным отклонением (среднее арифметическое) или максимальную частоту (мода), но и как некоторую отметку (значение в совокупности), делящую ранжированные данные (отсортированные по возрастанию или убыванию) на две равные части. Половина исходных данных меньше этой отметки, а половина – больше. Это и есть медиана.
Итак, медиана в статистике – это уровень показателя, который делит набор данных на две равные половины. Значения в одной половине меньше, а в другой больше медианы. В качестве примера обратимся к набору нормально распределенных случайных чисел.
Очевидно, что при симметричном распределении середина, делящая совокупность пополам, будет находиться в самом центре – там же, где средняя арифметическая (и мода). Это, так сказать, идеальная ситуация, когда мода, медиана и средняя арифметическая совпадают и все их свойства приходятся на одну точку – максимальная частота, деление пополам, нулевая сумма отклонений – все в одном месте. Однако, жизнь не так симметрична, как нормальное распределение.
Допустим, мы имеем дело с техническими замерами отклонений от ожидаемой величины чего-нибудь (содержания элементов, расстояния, уровня, массы и т.д. и т.п.). Если все ОК, то отклонения, скорее всего, будут распределены по закону, близкому к нормальному, примерно, как на рисунке выше. Но если в процессе присутствует важный и неконтролируемый фактор, то могут появиться аномальные значения, которые в значительной мере повлияют на среднюю арифметическую, но при этом почти не затронут медиану.
Медиана выборки – это альтернатива средней арифметической, т.к. она устойчива к аномальным отклонениям (выбросам).
Математическим свойством медианы является то, что сумма абсолютных (по модулю) отклонений от медианного значения дает минимально возможное значение, если сравнивать с отклонениями от любой другой величины. Даже меньше, чем от средней арифметической, о как! Данный факт находит свое применение, например, при решении транспортных задач, когда нужно рассчитать место строительства объектов около дороги таким образом, чтобы суммарная длина рейсов до него из разных мест была минимальной (остановки, заправки, склады и т.д. и т.п.).
Формула медианы
Формула медианы в статистике для дискретных данных чем-то напоминает формулу моды. А именно тем, что формулы как таковой нет. Медианное значение выбирают из имеющихся данных и только, если это невозможно, проводят несложный расчет.
Первым делом данные ранжируют (сортируют по убыванию). Далее есть два варианта. Если количество значений нечетно, то медиана будет соответствовать центральному значению ряда, номер которого можно определить по формуле:
№Me – номер значения, соответствующего медиане,
N – количество значений в совокупности данных.
Тогда медиана обозначается, как
Это первый вариант, когда в данных есть одно центральное значение. Второй вариант наступает тогда, когда количество данных четно, то есть вместо одного есть два центральных значения. Выход прост: берется средняя арифметическая из двух центральных значений:
В интервальных данных выбрать конкретное значение не представляется возможным. Медиану рассчитывают по определенному правилу.
Для начала (после ранжирования данных) находят медианный интервал. Это такой интервал, через который проходит искомое медианное значение. Определяется с помощью накопленной доли ранжированных интервалов. Где накопленная доля впервые перевалила через 50% всех значений, там и медианный интервал.
Не знаю, кто придумал формулу медианы, но исходили явно из того предположения, что распределение данных внутри медианного интервала равномерное (т.е. 30% ширины интервала – это 30% значений, 80% ширины – 80% значений и т.д.). Отсюда, зная количество значений от начала медианного интервала до 50% всех значений совокупности (разница между половиной количества всех значений и накопленной частотой предмедианного интервала), можно найти, какую долю они занимают во всем медианном интервале. Вот эта доля аккурат переносится на ширину медианного интервала, указывая на конкретное значение, именуемое впоследствии медианой.
Обратимся к наглядной схеме.
Немного громоздко получилось, но теперь, надеюсь, все наглядно и понятно. Чтобы при расчете каждый раз не рисовать такой график, можно воспользоваться готовой формулой. Формула медианы имеет следующий вид:
где xMe — нижняя граница медианного интервала;
iMe — ширина медианного интервала;
∑f/2 — количество всех значений, деленное на 2 (два);
S(Me-1)— суммарное количество наблюдений, которое было накоплено до начала медианного интервала, т.е. накопленная частота предмедианного интервала;
fMe — число наблюдений в медианном интервале.
Как нетрудно заметить, формула медианы состоит из двух слагаемых: 1 – значение начала медианного интервала и 2 – та самая часть, которая пропорциональна недостающей накопленной доли до 50%.
Для примера рассчитаем медиану по следующим данным.
Требуется найти медианную цену, то есть ту цену, дешевле и дороже которой по половине количества товаров. Для начала произведем вспомогательные расчеты накопленной частоты, накопленной доли, общего количества товаров.
По последней колонке «Накопленная доля» определяем медианный интервал – 300-400 руб (накопленная доля впервые более 50%). Ширина интервала – 100 руб. Теперь остается подставить данные в приведенную выше формулу и рассчитать медиану.
То есть у одной половины товаров цена ниже, чем 350 руб., у другой половины – выше. Все просто. Средняя арифметическая, рассчитанная по этим же данным, равна 355 руб. Отличие не значительное, но оно есть.
Расчет медианы в Excel
Медиану для числовых данных легко найти, используя функцию Excel, которая так и называется — МЕДИАНА. Другое дело интервальные данные. Соответствующей функции в Excel нет. Поэтому нужно задействовать приведенную выше формулу. Что поделаешь? Но это не очень трагично, так как расчет медианы по интервальным данным – редкий случай. Можно и на калькуляторе разок посчитать.
Напоследок предлагаю задачку. Имеется набор данных. 15, 5, 20, 5, 10. Каково среднее значение? Четыре варианта:
Мода, медиана и среднее значение выборки – это разный способ определить центральную тенденцию в выборке.
Ниже видеоролик о том, как рассчитать медиану в Excel.
Источник