Радиоактивное излучение способы защиты от него

X Международная студенческая научная конференция Студенческий научный форум — 2018

СПОСОБЫ ЗАЩИТЫ ЧЕЛОВЕКА ОТ ВОЗДЕЙСТВИЯ РАДИОАКТИВНОГО ИЗЛУЧЕНИЯ

Радиации представляет следующие опасности:

Лучевые ожоги и лучевая болезнь;

Повреждение красного костного мозга, систем синтеза кровеных клеток, развитие болезней крови;

Повреждение ротовой полости и легких;

Повреждение органов чувств и головного мозга.

Способы защиты от радиации можно разделить на 3 типа:

Профессиональная радиационная защита – для людей работающих в условиях радиации;

Медицинская радиационная защита – для медицинских работников и пациентов;

Общественная радиационная защита – для населения.

Для выбора способа защиты нужно понимать факторы воздействия радиации, а их тоже 3 штуки:

Время – чем меньше продолжительность воздействия, тем лучше;

Расстояние – чем дальше от источника радиации, тем лучше;

Преграды – чем больше препятствий между человеком и источником радиоактивного излучения, тем лучше.

У каждого материала свои характеристики защиты от радиоактивного излучения. Помимо свойств самого материала разными характеристиками обладает само радиоактивное излучение. Альфа-частицы может задержать обычный лист бумаги, бета-частицы остановят несколько миллиметров алюминиевой фольги, а для гамма-излучения лучше всего защищаться при помощи материалов из химических элементов с высокой массой ядра.

Радиация бывает первичной и вторичной. Первичная радиация образуется во время высвобождения ионизирующего излучения, а вторичная радиация распространяется в виде радиоактивных осадков, распространяемых ветром и облаками.

Как защититься от радиоактивного излучения

Если вы находитесь на улице, то вам следует перейти в помещение. Чем толще будут стены, тем меньше риск радиационного повреждения. Если вы находитесь дома, то плотно закройте окна, заклейте щели скотчем, закройте шторы, можете дополнительно их смочить. После этого направляйтесь в максимально защищенную комнату, обычно ею является ванна.

Чем вы ближе к источнику выброса радиации, тем дольше вам нужно находиться в защитном помещении. В первые часы уровень первичной и вторичной радиации максимален, а дальше многое будет зависеть от погодных условий.

Для оценки уровня снижения радиоактивного излучения применяется правило 7/10, которое означает, что уровень радиации будет уменьшаться в 10 раз через семикратное увеличение времени. Т.е. снижение в 10 раз будет через 7 часов, затем через 49, затем через 2 недели, затем через 3–3,5 месяца, затем через 2,5 года.

В обычных условиях мы не задумываемся о том, каким воздействиям вредных излучений мы подвергаемся. Мы годами можем жить в зданиях, построенных из радиоактивных материалов, ездить через зараженные территории, есть опасные продукты питания и не знать об этом. Например, мы не знаем где росли фрукты, а ведь если недалеко от места где их выращивали был выброс радиоактивных частиц, то скорее всего они окажутся зараженными. Это не означает, что они сразу стали не съедобны, если их хорошо помыть и очистить от кожуры, то они станут безопасны. Нужно понимать, что излучение само по себе не делает из нерадиоактивного предмета радиоактивный. Распространение вторичной радиации происходит, грубо говоря, за счет частиц. Попали такие частицы в воду – вода заражена.

Современные дозиметрические приборы обладают возможностью отлеживать уровень радиации в режиме реального времени. Их можно просто положить в сумку и в случае опасности они подадут звуковой сигнал.

Список использованных источников

1. Доза излучения (Дозиметрия) // Википедия [Интернет-ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/%D0%94%D0%BE%D0%B7%D0%B0_%D0%B8%D0%B7%D0%BB%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D1%8F.

2. Ионизирующее излучение // Википедия [Интернет-ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/%D0%98%D0%BE%D0%BD%D0%B8%D0%B7%D0%B8%D1%80%D1%83%D1%8E%D1%89%D0%B5%D0%B5_%D0%B8%D0%B7%D0%BB%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5.

3. Радиационная безопасность // Википедия [Интернет-ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B4%D0%B8%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D0%B1%D0%B5%D0%B7%D0%BE%D0%BF%D0%B0%D1%81%D0%BD%D0%BE%D1%81%D1%82%D1%8C.

4. Френкель, Е.Н. Концепции современного естествознания : физические, химические и биологические концепции : учеб. пособие / Е.Н. Френкель. – Ростов н/Д : Феникс, 2014. – 246 с.

Источник

IX Международная студенческая научная конференция Студенческий научный форум — 2017

РАДИОАКТИВНЫЕ ИЗЛУЧЕНИЯ, ИХ ВЛИЯНИЕ НА ОРГАНИЗМ ЧЕЛОВЕКА. СПОСОБЫ ЗАЩИТЫ ОТ РАДИАЦИИ

С давних времен человек совершенствовал себя, как физически, так и умственно, постоянно создавая и совершенствуя орудия труда. Постоянная нехватка энергии заставляла человека искать и находить новые источники, внедрять их не заботясь о будущем. Таких примеров множество: паровой двигатель побудил человека к созданию огромных фабрик, что за собой повлекло мгновенное ухудшение экологи в городах. Другим примером служит создание каскадов гидроэлектростанций, затопивших огромные территории и изменившие до неузнаваемости экосистемы отдельных районов. В порыве за открытиями в конце XIX в. двумя учеными: Пьером Кюри и Марией Склодовской-Кюри было открыто явление радиоактивности. Именно это достижение поставило существование всей планеты под угрозу. За 100 с лишним лет человек наделал столько глупостей, сколько не делал за все свое существование. Давно уже прошла Холодная война, мы уже пережили Чернобыль и многие засекреченные аварии на полигонах, однако проблема радиационной угрозы никуда не ушла и посей день служит главной угрозой биосфере.

Радиация играет огромную роль в развитии цивилизации на данном историческом этапе. Благодаря явлению радиоактивности был совершен существенный прорыв в области медицины и в различных отраслях промышленности, включая энергетику. Но одновременно с этим стали всё отчётливее проявляться негативные стороны свойств радиоактивных элементов: выяснилось, что воздействие радиационного излучения на организм может иметь трагические последствия. Подобный факт не мог пройти мимо внимания общественности. И чем больше становилось известно о действии радиации на человеческий организм и окружающую среду, тем противоречивее становились мнения о том, насколько большую роль должна играть радиация в различных сферах человеческой деятельности.

К сожалению, отсутствие достоверной информации вызывает неадекватное восприятие данной проблемы. Газетные истории о шестиногих ягнятах и двухголовых младенцах сеют панику в широких кругах. Проблема радиационного загрязнения стала одной из наиболее актуальных. Поэтому необходимо прояснить обстановку и найти верный подход. Радиоактивность следует рассматривать как неотъемлемую часть нашей жизни, но без знания закономерностей процессов, связанных с радиационным излучением, невозможно реально оценить ситуацию.

Для этого создаются специальные международные организации, занимающиеся проблемами радиации, в их числе существующая с конца 1920-х годов Международная комиссия по радиационной защите (МКРЗ), а также созданный в 1955 году в рамках ООН Научный Комитет по действию атомной радиации (НКДАР).

Радиоактивность – это природное явление, когда происходит самопроизвольный распад ядер атомов, при котором возникают излучения. Эти излучения имеют большую энергию и способны ионизировать в той или иной степени любое вещество, например:

человеческий организм и т. д.

Ионизация вещества всегда сопровождается изменением его основных физико-химических свойств, а для биологической ткани, например, организма человека – нарушением её жизнедеятельности, что в конечном итоге может привести к тяжелым заболеваниям или даже вызвать гибель организма.

Ионизирующая способность радиоактивного излучения зависит от его типа и энергии, а также свойства ионизирующего вещества и оценивается удельной ионизацией, которая измеряется количеством ионов этого вещества, создаваемых излучением на расстоянии в 1 см.

Читайте также:  Рисование старшая группа осень нетрадиционным способом

Поражение человека радиоактивными излучениями возможно от источников как искусственного, так и естественного происхождения.

В настоящее время основными искусственными источниками радиоактивного загрязнения окружающей среды являются:

урановая промышленность, которая занимается добычей, переработкой, обогащением и приготовлением ядерного топлива;

ядерные реакторы разных типов, в активной зоне которых сосредоточены большие количества радиоактивных веществ;

радиохимическая промышленность, на предприятиях которой производится регенерация (переработка и восстановление) отработанного ядерного топлива;

места переработки и захоронения радиоактивных отходов из-за случайных аварий, связанных с разрушением хранилищ, также могут явиться источниками загрязнения окружающей среды;

использование радионуклидов в народном хозяйстве в виде закрытых радиоактивных источников в промышленности, медицине, геологии, сельском хозяйстве и других отраслях;

ядерные взрывы и возникающее после взрыва радиоактивное загрязнение местности (могут быть как локальные, так и глобальные выпадения радиоактивных осадков).

Естественные источники излучения, производящие этот фон, разделяют на две категории: внешнего и внутреннего облучения.

Внешнее облучение создается радиоактивными веществами, находящимися вне организма, к которым можно отнести космические излучения, солнечную радиацию, излучения от различных радиоактивных горных пород земной коры и т.д.

Внутреннее облучение создается радиоактивными веществами, попавшими внутрь организма с воздухом, например радиоактивный газ Радон, который прорывается на поверхность из глубины земных недр, а также с водой и пищей – когда загрязнение сельхозяйственной продукции и других продуктов питания происходит при выпадении радиоактивных осадков в некоторых районах Земли. Радон – тяжелый газ без вкуса, запаха и, при этом, невидимый. Радон высвобождается из земной коры повсеместно, но его концентрация в наружном воздухе существенно различается в разных точках земного шара.

Как ни парадоксально это может показаться на первый взгляд, но основное излучение от радона человек получает, находясь в закрытом, непроветриваемом помещении. Радон концентрируется внутри помещений лишь тогда, когда они в достаточной мере изолированы от внешней среды. Просачиваясь через фундамент и пол из грунта или, реже, высвобождаясь из стройматериалов, радон накапливается в помещении.

Герметизация помещений с целью утепления только усугубляет ситуацию, поскольку при этом еще более затрудняет вывод радиоактивного газа наружу.

Самые распространенные стройматериалы – дерево, кирпич и бетон – выделяют относительно немного радона. Гораздо большей удельной радиоактивностью обладают гранит, пемза, изделия из глиноземного сырья и фосфогипса.

Еще один, как правило, менее важный, источник поступления радона в жилые помещения представляет собой вода и природный газ. Концентрация радона в обычно используемой воде чрезвычайно мала, но вода из глубоких колодцев или артезианских скважин содержит очень много радона.

Однако основная опасность исходит вовсе не от питья воды даже при высоком содержании в ней радона. Обычно люди потребляют большую часть воды в составе пищи и в виде горячих напитков, а при кипячении воды или приготовлении горячих блюд радон почти полностью улетучивается.

Наибольшую опасность представляет попадание паров воды с высоким содержанием радона в легкие вместе с вдыхаемым воздухом, что чаще всего происходит в ванной комнате или в парилке (парной бани или сауны).

Также концентрация радона в помещении может заметно возрасти, если кухонные плиты и другие нагревательные газовые приборы не снабжены вытяжкой. При наличии же вытяжки, которая сообщается с наружным воздухом, концентрации радона в этих случаях не происходит.

При внешнем облучении наиболее опасны излучения, имеющие высокую проникающую способность.

При внутреннем облучении наиболее опасны излучения, имеющие высокую ионизирующую способность.

Считается, что внешнее облучение менее опасно, так как от него нас защищают стены помещений, одежда, кожный покров, специальные средства защиты и др.

Внутреннее же облучение воздействует на незащищенные ткани и органы, т.е. системы организма человека, причем на молекулярно-клеточном уровне. Поэтому внутреннее облучение воздействует на организм больше, чем такое же внешнее.

Радиоактивное излучение бывает трех типов: альфа-, бета- и гамма-излучение.

Альфа-излучение отклоняется электрическим и магнитным полями, обладает высокой ионизирующей и малой проникаю­щей способностью (например, поглощается слоем алюминия толщиной примерно 0,05 мм.). Это поток ядер гелия.

Бета-излучение отклоняется электрическим и магнитным по­лями. Его ионизирующая способность значительно меньше (при­мерно на два порядка), а поглощающая, гораздо больше (по­глощается слоем алюминия толщиной примерно 2 мм), чем у альфа-частиц. Это поток электронов или позитронов. Коэффи­циент поглощения бета-излучения, которое сильно рассеивается в веществе, зависит не только от свойств вещества, но и от раз­меров и формы тела, на которое падает бета-излучение.

Гамма-излучение не отклоняется электрическим и магнитным полями, обладает относительно слабой ионизирующей способ­ностью и очень большой проникающей способностью (напри­мер, проходит через слой свинца толщиной 5 см). При прохож­дении через кристаллическое вещество наблюдается дифракция гамма-излучения. Гамма-излучение – это коротковолновое элек­тромагнитное излучение с чрезвычайно малой длиной волны – меньше 10 -10 м. Многие радиоактивные процессы сопровожда­ются излучением гамма-квантов.

В начальный период исследования радиоактивного излуче­ния приходилось иметь дело с проникающим рентгеновским из­лучением, распространяющимся в воздухе. Поэтому в качестве количественной меры излучения многие годы применяли ре­зультат измерений ионизации воздуха вблизи рентгеновских трубок и аппаратов. Позднее пыла установлена экспозиционная доза – количественная характеристика ионизирующею излучения. Единица экспозиционной дозы – рентген (Р), 1 Р = 2·10 9 пар ионов в 1 см 3 воздуха при атмосферном давлении. В практической дозиметрии часто применяется мощность экспозиционной дозы, равная экспозиционной дозе в единицу времени.

Изучение последствий облучения живого организма привело к заключению, что радиобиологический эффект зависит не только от поглощенной дозы, т.е. энергии, переданной облученному веществу, но и от других факторов. При одной и той же погло­щённой дозе радиобиологический эффект тем выше, чем мощнее ионизация, создаваемая излучением. Для количественной оценки такого влияния вводится понятие эквивалентной дозы. Единица эквивалентной дозы – зиверт (Зв), названная в честь известного шведского радиобиолога Г.Р. Зиверта. Иногда используется другая единица эквивалентной дозы – бэр (1 3в =100 бэр).

Источники радиоактивного излучения

Основную часть облучения население Земли получает от естест­венных источников радиоактивного излучения. Большинство из них таковы, но избежать облучения от них совершенно невоз­можно. На протяжении всей истории существования Земли раз­ные виды излучения падают на ее поверхность из космоса и по­ступают от радиоактивных веществ, находящихся в земной коре. Человек подвергается облучению двумя путями. Радиоактивные вещества могут находиться вне организма и облучать его снару­жи; в этом случае говорят о внешнем облучении. Или же они могут оказаться в воздухе, которым дышит человек, в пище или воде и попасть внутрь организма. Такой способ облучения на­зывают внутренним. Облучению от естественных источников радиации подвергается любой житель Земли, однако одни из них получают большие дозы, чем другие. Это зависит, в частно­сти, от того, где они живут. Уровень радиации в некоторых мес­тах земного шара, где залегают радиоактивные породы, оказывается значительно выше среднего, а в других местах – соответст­венно ниже.

Читайте также:  Способ отображения данных 7 букв

Доза облучения зависит, кроме того, от условий жизни лю­дей. Применение некоторых строительных маршалов, исполь­зование газа для приготовления пищи, открытых угольных жаровень, герметизация помещений и даже полеты на самолётах – все эти сказывается на уровне облучения за счет естественных источников радиации. Земные источники радиации в сумме от­ветственны за большую часть облучения, которому подвергается человек за счет естественной радиации. В среднем они дают бо­лее 5/6 годовой эквивалентной дозы. получаемой населением в основном вследствие внутреннего облучения. Остальную часть вносят космические лучи, главным образом путем внешнего об­лучения. Рассмотрим вначале некоторые данные о внешнем облучении от источников космического происхождения.

Космические лучи. Естественный радиационный фон, созда­ваемый космическими лучами, дает чуть меньше половины внешнего облучения, получаемого населением от естественных источников радиации. Космические лучи в основном приходят к нам из глубин Вселенной, но некоторая их часть рождается на Солнце во время солнечных вспышек. Космические лучи могут достигать поверхности Земли или взаимодействовать с её атмо­сферой, порождая вторичное излучение и приводя к образова­нию различных радионуклидов. Нет такого места на Земле, куда бы не падали невидимые космические лучи. Но одни участки земной поверхности более подвержены их действию, чем другие. Северный и Южный полюсы получают больше радиации, чем экваториальные области, из-за наличия у Земли магнитного но­ля, отклоняющего заряженные частицы, из которых в основном и состоят космические лучи.

Существеннее, однако, то, что уровень облучения растет с высотой, поскольку при этом над нами остается все меньше воздуха, играющего роль защитного экрана. Люди, живущие на уровне моря, получают в среднем из-за космических лучей эк­вивалентную дозу около 300 мкЗв/год; для людей же, живущих выше 2000м над уровнем моря, эта величина в несколько раз больше.

Еще более интенсивному, хотя и относительно непродолжи­тельному облучению, подвергаются экипажи и пассажиры само­летов. При подъеме с высоты 4000м (максимальная высота, на которой расположены поселения людей: деревни шерпов на склонах Эвереста) до 12 000 м (максимальная высота полета трансконтинентальных авиалайнеров) уровень облучения за счет космических лучей возрастает примерно в 25 раз и продолжает расти при дальнейшем увеличении высоты до 20 000м (макси­мальная высота полета сверхзвуковых реактивных самолетов) и выше. При перелете из Нью-Йорка в Париж пассажир обычного турбореактивного самолета получает дозу около 50 мкЗв, а пас­сажир сверхзвукового самолета на 20 % меньше, хотя подвергает­ся более интенсивному облучению. Это объясняется тем, что во втором случае перелет занимает гораздо меньше времени.

Земные радиоактивные источники излучения. Основные ра­диоактивные изотопы, встречающиеся в горных породах Земли – это калий-40, рубидий-87 и изотопы двух радиоактивных семейств, берущих начало соответственно от урана-238 и тория-232 – долгоживущих изотопов, входящих в состав Земли с самого ее рождения. Разумеется, уровни земной радиации неодинаковы для разных мест земного шара и зависят от концентрации ра­дионуклидов в том или ином участке земной коры. В местах проживания основной массы населения они примерно одного порядка. Мощность эквивалентной дозы естественного радиоак­тивного фона на Земле составляет в среднем 1 м3в/год, или около 0,12 мк3в/час. Для сравнения укажем, что просмотр одного хоккейного матча по телевизору дает дозу около 0,01 мк3в.

Облучение в 5 м3в за год (или 0,5–0,6 мкЗв/час) считается до­пустимым для населения (для персонала АЭС – в 10 раз больше), гак же, как и разовая доза 0,1–0,2 Зв при аварийном облучении.

При получении однократной дозы, начиная с 0,5 Зв, наблю­дается кратковременное изменение состава крови и нарушение работы желудочно-кишечного тракта. При дозе в 1 Зв и более развиваются симптомы лучевой болезни различной степени тя­жести- Доза в 4,5 38 является половинной летальной дозой, т.е. при её получении погибает 50 % облучённых, а доза 6 Зв безусловно смертельна.

Согласно исследованиям, проведенным во Франции, ФРГ, Италии, Японии и США, примерно 95 % населения этих стран живет в местах, где мощность дозы облучения в среднем состав­ляет от 0,3 до 0,6 мЗв/год. Некоторые группы населения полу­чают значительно большие дозы облучения: около 3 % получает в среднем 1 мЗв/год, а примерно 1,5 % – более 1,4 мЗв/год.

Есть, однако, такие места, где уровни земной радиации на­много выше. Например, на небольшой возвышенности, расположенной в 200 км от Сан-Паулу в Бразилии, уровень радиации в ЯОО раз превосходна средний и достигает примерно 251 мЗв/год. По каким-то причинам возвышенность оказалась необитаемой. Лишь чуть меньшие уровни радиации были зарегистрированы на морском курорте Гуарапари с населением примерно 12000 человек, расположенном в 600км к востоку от этой возвышен­ности. Каждое лето Гуарапари становится местом отдыха при­мерно 30000 курортников. На отдельных участках его пляжей зарегистрирован уровень радиации 175 мЗв/год. Радиация на улицах города намного ниже – от 8 до 15 мЗв/год, но всё же значительно превышает средний уровень.

Сходная ситуация наблюдается в рыбацкой деревушке Меаипе, расположенной в 50 км к югу от Гуарапари. Оба населен­ных пункта стоят на песках, богатых торием.

В другой части земного шара на юго-западе Индии 70000 че­ловек живут на узкой прибрежной полосе длиной 55км, вдоль которой также тянутся пески, богатые торием. Исследования, охватившие 8513 человек из числа проживающих на этой терри­тории, показали, что данная группа лиц получает в среднем 3,8 м3в/год на человека. Из них более 500 человек получают свыше 8,7 м3в/год. Около шестидесяти человек получают годо­вую дозу, превышающую 17 м3в/год, что существенно превыша­ет годовую дозу внешнего облучения от земных источников ра­диации.

Территории в Бразилии и Индии – наиболее хорошо изу­ченные «горячие точки» нашей планеты. Но в Иране, например в районе городка Рамсер, где бьют ключи, богатые радием, были зарегистрированы уровни радиации 400 мЗв/год. Известны и другие места на земном шаре с высоким уровнем радиации, на­пример во Франции, Нигерии, на Мадагаскаре.

Источники внутреннего облучения. В среднем примерно 2/3 эффективной эквивалентной дозы облучения, которую чело­век получает от естественных источников радиации, поступает от радиоактивных веществ, попавших в организм с пищей, во­дой и воздухом. Совсем небольшая часть этой дозы приходится на радиоактивные изотопы типа углерода-14 и трития, которые образуются под действием космических лучей. Всё остальное поступает от источников земного происхождении. В среднем че­ловек получает около 180 мкЗв/год за счёт калия-40, который усваивается организмом вместе с нерадиоактивными изотопами калия, необходимыми для жизнедеятельности организма.

Значительно большую дозу внутреннего облучения человек получает от нуклидов радиоактивного ряда урана-238 и в мень­шей степени – от радионуклидов ряда тория-232. Некоторые из них, например нуклиды свинца и полония, поступают в орга­низм с пищей. Они концентрируются в рыбе и моллюсках, по­этому люди. потребляющие мною рыбы и других даров моря. могут получить относительно высокие дозы облучения.

Читайте также:  Сколько способов создания форм бд существует опишите эти способы

Десятки тысяч людей на Крайнем Севере питаются в основ­ном мясом северного оленя (карибу), в котором радиоактивные изотопы свинца я полония присутствуют в довольно высокой концентрации. Особенно велико содержание полония-210. Эти изотопы попадают в организм оленей зимой, когда они питают­ся лишайниками, в которых накапливаются оба изотопа. Дозы внутреннего облучения человека от полония-210 в этих случаях могут в 35 раз превышать средний уровень.

В другом земном полушарии люди, живущие в Западной Ав­стралии в местах с повышенной концентрацией урана, получают дозы облучения, в 75 раз превосходящие средний уровень, по­скольку едят мясо и требуху овец и кенгуру. Прежде чем по­пасть в организм человека, радиоактивные вещества, как и в рассмотренных выше случаях, проходят по сложным маршрутам в окружающей среде, и это приходится учитывать при оценке доз облучения, полученных от какого-либо источника.

Искусственные источники радиоактивного излучения. За по­следние несколько десятилетий человек создал сотни искусст­венных радионуклидов и научился использовать энергию атома в самых разных целях: в медицине, для создания атомного ору­жия, для производства энергии и обнаружения пожаров, для изготовления светящихся циферблатов часов и поиска полезных ископаемых. Все это приводит к увеличению дозы облучения Как отдельных людей, так и населения Земли в целом. Индиви­дуальные дозы, получаемые равными людьми от искусственных источников радиации, сильно различаются- В большинстве слу­чаев эти дозы весьма невелики, но иногда облучение за счет техногенных источников оказывается во много тысяч раз интен­сивнее, чем за счет естественных. Как правило, для техногенных источников радиации упомянутые различия выражены гораздо сильнее, чем для естественных. Кроме того, порождаемое им излучение обычно легче контролировать, хотя облучение, свя­занное с радиоактивными осадками от ядерных взрывов, почти так же невозможно контролировать, как и облучение, обуслов­ленное космическими лучами или земными источниками.

Одним из основных физических способов предотвращения облучения является экранирование. Специально разработанные защитные костюмы и экраны позволяют обеспечить достаточно безопасное пребывание человека в условиях радиации.

Каждому излучению свой экран.

Существует несколько видов ионизирующего излучения, каждый их которых имеет свои особенности с точки зрения взаимодействия с веществом. Чтобы противостоять им, при изготовлении средств защиты используются различные материалы.

Альфа-излучение характеризуются низкой проникающей способностью и воздействует на организм только в непосредственной близости от источника излучения. Поэтому даже лист бумаги, резиновые перчатки, пластиковые очки и простой респиратор будут для него непреодолимым препятствием. При этом респиратор является особенно важной частью защитного костюма, т.к. попавшие внутрь организма альфа-частицы накапливаются в клетках органов и долго не распадаются, отравляя организм.

Бета-излучение обладает большей, чем альфа-излучение проникающей способностью, которая зависит от энергии его частиц. А это значит, что средства, предназначенные для защиты от альфа-излучения, при потоке бета-частиц не эффективны. Поэтому используются плексиглас, стекло, тонкий слой алюминия, противогаз.

Гамма-излучение распространяется на большие расстояния и проникает практически сквозь любую поверхность. Исключение составляют тяжёлые металлы типа вольфрама, свинца, стали, чугуна и пр., именно они и применяются для защиты.

Нейтронное излучение – продукт ядерного распада с проникающей способностью, превосходящей гамма-излучение. Лучшей защитой от нейтронного излучения являются такие материалы, как вода, полиэтилен, другие полимеры. Нейтронное излучение обычно сопровождается гамма-излучением, поэтому зачастую в качестве защиты применяют многослойные экраны или растворы гидроксидов тяжелых металлов.

Как защитить себя от радиации?

Несмотря на высокую опасность, которую несет в себе практически любой источник радиации, методы защиты от облучения все же существуют. Все способы защиты от радиационного воздействия можно разделить на три вида: время, расстояние и специальные экраны.

Защита временем

Смысл этого метода защиты от радиации заключается в том, чтобы максимально уменьшить время пребывания вблизи источника излучения. Чем меньше времени человек находится вблизи источника радиации, тем меньше вреда здоровью он причинит. Данный метод защиты использовался, к примеру, при ликвидации аварии на АЭС в Чернобыле. Ликвидаторам последствий взрыва на атомной электростанции отводилось всего несколько минут на то, чтобы сделать свою работу в пораженной зоне и вернуться на безопасную территорию. Превышение времени приводило к повышению уровня облучения и могло стать началом развития лучевой болезни и других последствий, которые может вызывать радиация.

Противорадиационные экраны и спецодежда

В некоторых ситуациях просто необходимо осуществлять какую-либо деятельность в зоне с повышенным радиационным фоном. Примером может быть устранение последствий аварии на атомных электростанциях или работы на промышленных предприятиях, где существуют источники радиоактивного излучения. Находиться в таких зонах без использования средств индивидуальной защиты опасно не только для здоровья, но и для жизни. Специально для таких случаев были разработаны средства индивидуальной защиты от радиации. Они представляют собой экраны из материалов, которые задерживают различные виды радиационного излучения и специальную одежду.

Защитный костюм против радиации

Из чего делают средства защиты от радиации?

Как известно, радиация классифицируется на несколько видов в зависимости от характера и заряда частиц излучения. Чтобы противостоять тем или иным видам радиационного излучения средства защиты от него изготавливаются с использованием различных материалов:

Обезопасить человека от альфа-излучения, помогают резиновые перчатки, «барьер» из бумаги или обычный респиратор.

Если в заражённой зоне преобладает бета-излучение, то для того, чтобы оградить организм от его вредного воздействия потребуется экран из стекла, тонкого алюминиевого листа или такой материал, как плексиглас. Для защиты от бета-излучения органов дыхания обычным респиратором уже не отделаться. Тут потребуется противогаз.

Сложнее всего оградить себя от гамма-излучения. Обмундирование, которое обладает экранирующим действием от такого рода радиации, выполняется из свинца, чугуна, стали, вольфрама и других металлов с высокой массой. Именно одежда из свинца использовалась при проведении работ на Чернобыльской АЭС после аварии.

Всевозможные барьеры из полимеров, полиэтилена и даже воды эффективно предохраняют от вредного воздействия нейтронных частиц.

Вывод.

Радиация является одним из самых опасных для человека физических процессов, неконтролируемое воздействие которого может привести к фатальным последствиям.

Особенно опасным для подвальных и цокольных помещений, а также для нижних этажей домов и сооружений, является радиоактивный газ радон. Поднимаясь по разломам земной коры, он попадает в подвалы и полуподвалы, и по вентиляционным шахтам и лестничным клеткам с потоками воздуха устремляется на верхние этажи.

Литература

1. Гончаренко Е.Н., Кудряшов Ю.Б. Химическая защита от лучевого поражения. – М.: Изд-во МГУ, 1985

2. Саксонов П.П., Шашков В.С. Сергеев П.В. Радиационная фармакология. М.: Медицина, 1976.

3. Военная токсикология, радиобиология и медицинская защита. – Под ред. С.А. Куценко. – СПб.: Фолиант. – 2004.

Источник

Оцените статью
Разные способы