Радикальный способ разрыва связи

Механизмы реакций в органической химии

Ионный (правило В.В. Марковникова) и радикальный механизмы реакций в органической химии.

Механизмы разрыва химических связей в органических реакциях

Гомолитический разрыв связи – это такой разрыв химической связи, когда каждый атом получает при разрыве связи по одному электрону из общей электронной пары.

Образующиеся при этом частицы — это свободные радикалы.

Свободные радикалы – это частицы, каждая из которых содержит один неспаренный электрон.

A:B A∙ + ∙B

Гомолитический разрыв связи характерен для слабо полярных или неполярных связей.

Условия протекания радикальных реакций:

  • Повышенная температура;
  • Неполярный растворитель или отсутствие растворителя
  • Реакция протекает под действием света или ультрафиолетового излучения
  • В системе присутствуют свободные радикалы или источники свободных радикалов.

Например , взаимодействие метана с хлором протекает по цепному радикальному механизму.

То есть реакция протекает как цепь последовательных превращений с участием свободных радикалов.

Свободные радикалы R∙ – это атомы или группы связанных между собой атомов, которые содержат один или несколько неспаренных электронов. Свободные радикалы – очень активные частицы, которые стремятся образовать связь с каким-либо другим атомом.

Этапы радикально-цепного процесса:

Стадия 1. Инициирование цепи. Под действием кванта света или при нагревании молекула галогена распадается на радикалы:

Cl:Cl → Cl⋅ + ⋅Cl

Стадия 2. Развитие цепи. Радикалы взаимодействуют с молекулами с образованием новых молекул и радикалов. Радикал галогена взаимодействует с молекулой алкана и отрывает от него водород. При этом образуется промежуточная частица – алкильный радикал, который в свою очередь взаимодействует с молекулой хлора:

CH4 + ⋅Cl → CH3⋅ + HCl

Стадия 3. Обрыв цепи. При протекании цепного процесса рано или поздно радикалы сталкиваются с радикалами. При этом образуются молекулы, т.е. радикальный процесс обрывается. Могут столкнуться разные радикалы, в том числе два метильных радикала:

Гетеролитический (ионный) разрыв связи это такой разрыв химической связи, когда один из атомов получает при разрыве общую электронную пару.

При гетеролитическом разрыве связи образуются ионы – положительно заряженный катион и отрицательно заряженный анион.

A:B A: – + B +

Если на атоме углерода сосредоточен положительный заряд, то такой катион называют карбокатионом.

Если на атоме углерода сосредоточен отрицательный заряд, то такой анион называют карбоанионом.

Гетеролитический (ионный) механизм характерен для полярных и легко поляризуемых связей.

Условия протекания ионных реакций:

  • Относительно невысокая температура;
  • Использование полярного растворителя;
  • Использование катализатора.

Присоединение галогеноводородов (гидрогалогенирование). Например, этилен взаимодействует с бромоводородом:

Реакция протекают по механизму электрофильного присоединения в несколько стадий.

I стадия. Электрофилом является протон Н + в составе бромоводорода. Катион водорода присоединяется к атому углерода при двойной связи и образуется карбокатион . На втором атоме углерода, который потерял электроны π-связи, образуется положительный заряд:

II стадия. Карбокатион взаимодействует с анионом Br – :

При присоединении галогеноводородов и других полярных молекул к симметричным алкенам образуется одно вещество.

Например , при присоединении бромоводорода к этилену образуется только бромэтан.

При присоединении полярных молекул к несимметричным алкенам образуется смесь изомеров. При этом выполняется правило Марковникова.

Правило Марковникова: при взаимодействии полярных молекул типа НХ с несимметричными алкенами водород преимущественно присоединяется к наиболее гидрогенизированному атому углерода при двойной связи.

Например , при взаимодействии хлороводорода HCl с пропиленом атом водорода присоединяется преимущественно к атому углерода группы СН2=, поэтому преимущественно образуется 2-хлорпропан. При этом 1-хлорпропан образуется в незначительном количестве:

В некоторых случаях присоединение к двойным связям происходит против правила Марковникова.

Исключения из правила Марковникова:

1) Если в молекуле присутствует заместитель, который оттягивает на себя электронную плотность двойной связи.

Например , при взаимодействии 3-хлорпропена с хлороводородом HCl преимущественно образуется 1,3-дихлорпропан. Атом хлора смещает к себе электронную плотность, поэтому π-электронная плотность двойной связи смещена к менее гидрогенизированному атому углерода:

2) Если в реакционной системе присутствуют свободные радикалы или источники свободных радикалов, то реакция присоединения полярных молекул вида НХ к двойной связи протекает по радикальному механизму против правила Марковникова.

Например , при присоединении бромоводорода к пропилену в присутствии пероксидов (H2O2 или R2O2) преимущественно образуется 1-бромпропан:

Источник

Радикальный способ разрыва связи

По способу разрыва ковалентных связей органические реакции подразделяются на радикальные и ионные реакции. Ионные реакции в свою очередь делятся по характеру реагента, действующего на молекулу, на электрофильные и нуклеофильные.

1. Свободнорадикальный (гомолитический) разрыв связей

Разрыв связи, при котором каждый атом получает по одному электрону из общей пары, называется гомолитическим:

Такому разрыву подвергаются неполярные и малополярные ковалентные связи под действием света или высокой температуры. Образующиеся частицы содержат неспаренные электроны и называются свободными радикалами. Эти частицы обладают большой энергией и очень активны.

2. Ионный (гетеролитический) разрыв связей

Если при разрыве связи общая электронная пара остается у одного атома, то такой разрыв называется гетеролитическим:

В результате образуются разноименно заряженные ионы – катион и анион. Если заряд иона сосредоточен на атоме углерода, то катион называют карбокатионом, а анион — карбанионом.

Устойчивы более разветвлённые катионы.

Такому разрыву подвергаются полярные ковалентные связи.

Образующиеся органические ионные частицы отличаются от неорганических тем, что они возникают в момент реакции.

Источник

Радикальный способ разрыва связи

Способы разрыва связей в молекулах органических веществ и механизмы органических реакций

Разрыв ковалентной связи может происходить двумя способами.

1. Разрыв связи, при котором каждый атом получает по одному электрону из общей пары, называется гомолитическим:

В результате гомолитического разрыва образуются сходные по электронному строению частицы, каждая из которых имеет неспаренный электрон. Такие частицы называются свободными радикалами.

Радикал – свободный атом или частица с неспаренными электронами, неустойчив и способный быстро вступать в химическую реакцию.

Гомолитический разрыв сопровождает процессы, осуществляемые при высоких температурах; на свету; при радиоактивном облучении в отсутствие растворителя (в газовой фазе) или неполярных растворителях. Гомолитическому разрыву подвергаются малополярные или неполярные связи C C , C H , Cl Cl и др.

2. Если при разрыве связи общая электронная пара остается у одного атома, то такой разрыв называется гетеролитическим:

А + — электрофильная частица, :В — — нуклеофильная частица

В результате образуются разноименно заряженные ионы — катион и анион. Если заряд иона сосредоточен на атоме углерода, то катион называют карбокатионом, а анион — карбанионом.

Устойчивы более разветвлённые катионы!

Ионный тип разрыва связи характерен для П- связей и полярных σ – связей; при наличии полярного растворителя или катализатора.

Классификация органических реакций

I . Классификация по механизму реакции

В зависимости от способа разрыва ковалентной связи в реагирующей молекуле органические реакции подразделяются на радикальные и ионные реакции.

1. Гомолитические (радикальные) реакции

Например, галогенирование алканов (реакция цепная)

Внимание! В реакциях замещения алканов легче всего замещаются атомы водорода у третичных атомов углерода, затем у вторичных и, в последнюю очередь, у первичных.

1; 4 – первичные; 3 – вторичный; 2 – третичный.

2. Гетеролитические (ионные)

Гетеролитический распад ковалентной полярной связи приводит к образованию нуклеофилов (анионов) и электрофилов (катионов):

Образовавшиеся ионы вступают в дальнейшие превращения, например:

Ионные реакции делятся по характеру реагента, действующего на молекулу, на электрофильные и нуклеофильные.

Электрофил E (любящий электроны) это частица, которая атакует атом углерода органического соединения, отнимая у него электронную пару (является акцептором электронов). Примеры частиц – электрофилов: H 3 O + , H + , HCl , HNO 3 , NO 2 + , AlCl 3 и др

Нуклеофил N (любящий ядро) – это частица, которая атакует атом углерода, предоставляя ему электронную пару (является донором электронов). Такие частицы, как правило, обладают основными свойствами. К ним относятся: OH , Cl , S 2- , NH 3 , H 2 O , R OH , CH 3 O и др

Нуклеофильные реакции – это реакции органических веществ с нуклеофилами, т.е. анионами или молекулами, которые предоставляют электронную пару на образование новой связи:

С H 3 Br (субстрат) + NaOH (реагент-нуклеофил) → CH 3 OH + NaBr

Электрофильные реакции – реакции органических соединений с электрофильными реагентами, т.е. катионами или молекулами, которые имеют свободную орбиталь, готовые принять электронную пару для образования новой связи

II . Классификация по направлению и конечному результату химического превращения

Это реакции замещения, присоединения, отщепления (элиминирования), перегруппировки, окисления и восстановления

Реакции замещения — замена атомов водорода или группы атомов на другой атом или группу атомов

1. Галогенирование (замещение атомов водорода на атомы галогенов)

2. Нитрование (замещение атомов водорода на нитрогруппу – NO 2 )

3. Алкилирование (замещение атомов водорода на углеводородный радикал – R )

Реакции присоединения — введение атома или группы атомов в молекулу непредельного соединения, что сопровождается разрывом в этом соединении π – связей

1. Гидрирование (присоединение H 2 к кратной связи или ароматическому ядру в присутствии катализатора – Ni , Pt , Pd ):

2 * . Гидратация (присоединение молекул Н2О):

CH≡CH + H2O → CH3-C=O (kat – соли ртути : Hg 2+ )

3 * . Гидрогалогенирование ( присоединение галогенводородов – HCl , HI , HBr . Для алкинов реакции идут труднее, поэтому используется AlCl 3 )

4. Галогенирование (присоединение галогенов С l 2 , Br 2 , I 2 )

*- использование правила Марковникова.

5. Реакции полимеризации

(получение полимера без образования побочного продукта)

Реакции отщепления (элиминирование) — реакции, в ходе которых происходит отщепление атомов или групп атомов от молекулы органического соединения с образование кратной связи

1. Дегидрирование (отщепление водорода):

2*. Дегидратация (отщепление воды)

2С H 3 — CH 2 — OH → CH 3 — CH 2 — O — CH 2 — CH 3 + H 2 O (получение простого эфира)

3*. Дегидрогалогенирование (отщепление галогенводорода — НГ)

*- использование правила Зайцева

4. Дегидроциклизация (отщеплении Н2 с одновременным замыканием углеродной цепи в цикл)

Реакции изомеризации (перегруппировка) — реакции с изменением строения вещества, но с сохранением химического состава

Подробнее о типах реакций по направлению и конечному результату химического превращения см. приложениях

Источник

Читайте также:  Способ определения относительной влажности воздуха
Оцените статью
Разные способы