- Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии
- ПРИМЕРЫ ЗАДАНИЙ
- Часть 1
- Термодинамика
- Внутренняя энергия
- Тепловое равновесие
- Теплопередача
- Количество теплоты. Удельная теплоемкость вещества
- Работа в термодинамике
- Уравнение теплового баланса
- Первый закон термодинамики
- Второй закон термодинамики
- КПД тепловой машины
- Принципы действия тепловых машин
- Проблемы энергетики и охрана окружающей среды
Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии
1. Существуют два вида механической энергии: кинетическая и потенциальная. Кинетической энергией обладает любое движущееся тело; она прямо пропорциональна массе тела и квадрату его скорости. Потенциальной энергией обладают взаимодействующие между собой тела. Потенциальная энергия тела, взаимодействующего с Землёй, прямо пропорциональна его массе и расстоянию между
ним и поверхностью Земли.
Сумма кинетической и потенциальной энергии тела называется его полной механической энергией. Таким образом, полная механическая энергия зависит от скорости движения тела и от его положения относительно того тела, с которым оно взаимодействует.
Если тело обладает энергией, то оно может совершить работу. При совершении работы энергия тела изменяется. Значение работы равно изменению энергии.
2. Если в закрытую пробкой толстостенную банку, дно которой покрыто водой, накачивать воздух (рис. 67), то через какое-то время пробка из банки вылетит и в банке образуется туман.
Это объясняется тем, что в воздухе, находящемся в банке, присутствует водяной пар, образующийся при испарении воды. Появление тумана означает, что пар превратился в воду, т.е. сконденсировался, а это может происходить при понижении температуры. Следовательно, температура воздуха в банке понизилась.
Причина этого следующая. Пробка вылетела из банки, потому что находившийся там воздух действовал на неё с определённой силой. Воздух при вылете пробки совершил работу. Известно, что работу тело может совершить, если оно обладает энергией. Следовательно, воздух в банке обладает энергией.
При совершении воздухом работы понизилась его температура, изменилось его состояние. При этом механическая энергия воздуха не изменилась: не изменились ни его скорость, ни его положение относительно Земли. Следовательно, работа была совершена не за счёт механической, а за счёт другой энергии. Эта энергия — внутренняя энергия воздуха, находящегося в банке.
3. Внутренней энергией тела называют сумму кинетической энергии движения его молекул и потенциальной энергии их взаимодействия.
Кинетической энергией \( (E_к) \) молекулы обладают, так как они находятся в движении, а потенциальной энергией \( (E_п) \) , поскольку они взаимодействуют.
Внутреннюю энергию обозначают буквой \( U \) . Единицей внутренней энергии является 1 джоуль (1 Дж).
4. Чем больше скорости движения молекул, тем выше температура тела, следовательно, внутренняя энергия зависит от температуры тела. Чтобы перевести вещество из твёрдого состояния в жидкое состояние, например, превратить лёд в воду, нужно подвести к нему энергию. Следовательно, вода будет обладать большей внутренней энергией, чем лёд той же массы, и, следовательно, внутренняя энергия зависит от агрегатного состояния тела.
Внутренняя энергия тела не зависит от его движения как целого и от его взаимодействия с другими телами. Так, внутренняя энергия мяча, лежащего на столе и на полу, одинакова, так же как и мяча, неподвижного и катящегося по полу (если, конечно, пренебречь сопротивлением его движению).
Об изменении внутренней энергии можно судить по значению совершённой работы. Кроме того, поскольку внутренняя энергия тела зависит от его температуры, то по изменению температуры тела можно судить об изменении его внутренней энергии.
5. Внутреннюю энергию можно изменить при совершении работы. Так, в описанном опыте внутренняя энергия воздуха и паров воды в банке уменьшалась при совершении ими работы по выталкиванию пробки. Температура воздуха и паров воды при этом понижалась, о чём свидетельствовало появление тумана.
Если по куску свинца несколько раз ударить молотком, то даже на ощупь можно определить, что кусок свинца нагреется. Следовательно, его внутренняя энергия, так же как и внутренняя энергия молотка, увеличилась. Это произошло потому, что была совершена работа над куском свинца.
Если тело само совершает работу, то его внутренняя энергия уменьшается, а если над ним совершают работу, то его внутренняя энергия увеличивается.
Если в стакан с холодной водой налить горячую воду, то температура горячей воды понизится, а холодной воды — повысится. В этом случае работа не совершается, однако внутренняя энергия горячей воды уменьшается, о чем и свидетельствует понижение её температуры.
Поскольку вначале температура горячей воды была выше температуры холодной воды, то и внутренняя энергия горячей воды больше. А это значит, что молекулы горячей воды обладают большей кинетической энергией, чем молекулы холодной воды. Эту энергию молекулы горячей воды передают молекулам холодной воды при столкновениях, и кинетическая энергия молекул холодной воды увеличивается. Кинетическая энергия молекул горячей воды при этом уменьшается.
В рассмотренном примере механическая работа не совершается, внутренняя энергия тел изменяется путём теплопередачи.
Теплопередачей называется способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы.
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. Внутренняя энергия газа в запаянном сосуде постоянного объёма определяется
1) хаотическим движением молекул газа
2) движением всего сосуда с газом
3) взаимодействием сосуда с газом и Земли
4) действием на сосуд с газом внешних сил
2. Внутренняя энергия тела зависит от
A) массы тела
Б) положения тела относительно поверхности Земли
B) скорости движения тела (при отсутствии трения)
1) только А
2) только Б
3) только В
4) только Б и В
3. Внутренняя энергия тела не зависит от
A) температуры тела
Б) массы тела
B) положения тела относительно поверхности Земли
1) только А
2) только Б
3) только В
4) только А и Б
4. Как изменяется внутренняя энергия тела при его нагревании?
1) увеличивается
2) уменьшается
3) у газов увеличивается, у твёрдых и жидких тел не изменяется
4) у газов не изменяется, у твёрдых и жидких тел увеличивается
5. Внутренняя энергия монеты увеличивается, если её
1) нагреть в горячей воде
2) опустить в воду такой же температуры
3) заставить двигаться с некоторой скоростью
4) поднять над поверхностью Земли
6. Один стакан с водой стоит на столе в комнате, а другой стакан с водой такой же массы и такой же температуры находится на полке, висящей на высоте 80 см относительно стола. Внутренняя энергия стакана с водой на столе равна
1) внутренней энергии воды на полке
2) больше внутренней энергии воды на полке
3) меньше внутренней энергии воды на полке
4) равна нулю
7. После того как горячую деталь опустят в холодную воду, внутренняя энергия
1) и детали, и воды будет увеличиваться
2) и детали, и воды будет уменьшаться
3) детали будет уменьшаться, а воды увеличиваться
4) детали будет увеличиваться, а воды уменьшаться
8. Один стакан с водой стоит на столе в комнате, а другой стакан с водой такой же массы и такой же температуры находится в самолете, летящем со скоростью 800 км/ч. Внутренняя энергия воды в самолёте
1) равна внутренней энергии воды в комнате
2) больше внутренней энергии воды в комнате
3) меньше внутренней энергии воды в комнате
4) равна нулю
9. После того как в чашку, стоящую на столе, налили горячую воду, внутренняя энергия
1) чашки и воды увеличилась
2) чашки и воды уменьшилась
3) чашки уменьшилась, а воды увеличилась
4) чашки увеличилась, а воды уменьшилась
10. Температуру тела можно повысить, если
А. Совершить над ним работу.
Б. Сообщить ему некоторое количество теплоты.
1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б
11. Свинцовый шарик охлаждают в холодильнике. Как при этом меняются внутренняя энергия шарика, его масса и плотность вещества шарика? Для каждой физической величины определите соответствующий характер изменения. Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) внутренняя энергия
Б) масса
B) плотность
ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличивается
2) уменьшается
3) не изменяется
12. В бутыль, плотно закрытую пробкой, закачивают насосом воздух. В какой-то момент пробка вылетает из бутыли. Что при этом происходит с объёмом воздуха, его внутренней энергией и температурой? Для каждой физической величины определите характер её изменения. Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) объём
Б) внутренняя энергия
B) температура
ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличивается
2) уменьшается
3) не изменяется
Источник
Термодинамика
Термодинамика – это раздел физики, изучающий тепловые свойства макроскопических тел и систем тел, находящихся в состоянии теплового равновесия, на основе закона сохранения энергии, без учета внутреннего строения тел, составляющих систему.
Термодинамика не рассматривает микроскопические величины – размеры атомов и молекул, их массы и количество.
Законы термодинамики устанавливают связи между непосредственно наблюдаемыми физическими величинами, характеризующими состояние системы, такими как давление \( p \) , объем \( V \) , температура \( T \) .
Внутренняя энергия
Внутренняя энергия – это физическая величина, равная сумме кинетической энергии теплового движения частиц тела и потенциальной энергии их взаимодействия друг с другом.
Обозначение – \( U \) , в СИ единица измерения – Джоуль (Дж).
В термодинамике внутренняя энергия зависит от температуры и объема тела.
Внутренняя энергия тел зависит от их температуры, массы и агрегатного состояния. С ростом температуры внутренняя энергия увеличивается. Наибольшая внутренняя энергия у вещества в газообразном состоянии, наименьшая – в твердом.
Внутренняя энергия идеального газа представляет собой только кинетическую энергию теплового движения его частиц; потенциальная энергия взаимодействия частиц равна нулю.
Внутренняя энергия идеального газа прямо пропорциональна его температуре, а от объема не зависит (молекулы идеального газа не взаимодействуют друг с другом):
где \( i \) – коэффициент, равный числу степеней свободы молекулы, \( \nu \) – количество вещества, \( R \) – универсальная газовая постоянная, \( T \) – абсолютная температура.
Число степеней свободы равно числу возможных движений частицы.
Важно!
Для одноатомных газов коэффициент \( i \) = 3, для двухатомных газов \( i \) = 5.
На практике часто важно уметь находить изменение внутренней энергии:
При решении задач можно записать формулу для вычисления внутренней энергии, используя уравнение Менделеева–Клапейрона:
где \( p \) – давление, \( V \) – объем газа.
Внутренняя энергия реальных газов зависит как от температуры, так и от объема.
Изменить внутреннюю энергию можно за счет изменения температуры (при теплопередаче) и за счет изменения давления и объема (при совершении работы).
Тепловое равновесие
Тепловое равновесие – это состояние системы, при котором все ее макроскопические параметры остаются неизменными сколь угодно долго.
Величины, характеризующие состояние макроскопических тел без учета их молекулярного строения, называются макроскопическими параметрами. К ним относятся давление и температура, объем, масса, концентрация отдельных компонентов смеси газа и др. В состоянии теплового равновесия отсутствует теплообмен с окружающими телами, отсутствуют переходы вещества из одного агрегатного состояния в другое, не меняются температура, давление, объем.
Любая термодинамическая система переходит самопроизвольно в состояние теплового равновесия. Каждому состоянию теплового равновесия, в которых может находиться термодинамическая система, соответствует определенная температура.
Важно!
В состоянии теплового равновесия объем, давление могут быть различными в разных частях термодинамической системы, и только температура во всех частях термодинамической системы, находящейся в состоянии теплового равновесия, является одинаковой. Микроскопические процессы внутри тела не прекращаются и при тепловом равновесии: меняются положения молекул, их скорости при столкновениях.
Теплопередача
Теплопередача – процесс изменения внутренней энергии тела без совершения работы.
Существуют три вида теплопередачи: теплопроводность, конвекция и излучение (лучистый теплообмен). Теплопередача происходит между телами, имеющими разную температуру. Тепло передается от тела с более высокой температурой к телу с более низкой температурой.
Теплопроводность – это процесс переноса энергии от более нагретых тел (частей тела) к менее нагретым в результате движения и взаимодействия частиц тела. Высокую теплопроводность имеют металлы – так, лучшие проводники тепла – медь, золото, серебро. Теплопроводность жидкостей меньше, а газы являются плохими проводниками тепла. Пористые тела плохо проводят тепло, так как в порах содержится воздух. Вещества с низкой теплопроводностью используют в качестве теплоизоляторов. Теплопроводность невозможна в вакууме. При теплопроводности не происходит переноса вещества.
Явление теплопроводности газов аналогично явлению диффузии. Быстрые молекулы из слоя с более высокой температурой перемещаются в более холодный слой, а молекулы из холодного слоя перемещаются в более нагретый. За счет этого средняя кинетическая энергия молекул более теплого слоя уменьшается, и его температура становится ниже.
В жидкостях и твердых телах при повышении температуры какого-либо участка твердого тела или жидкости его частицы начинают колебаться сильнее. Соударяясь с соседними частицами, где температура ниже, эти частицы передают им часть своей энергии, и температура этого участка возрастает.
Конвекция – перенос энергии потоками жидкости или газа.
Объяснить механизм конвекции можно на основе теплового расширения тел и закона Архимеда. При нагревании объем жидкости увеличивается, а плотность уменьшается. Нагретый слой под действием силы Архимеда поднимается вверх, а холодный опускается вниз. Это естественная конвекция. Она возникает при неравномерном нагревании жидкости или газа снизу в поле тяготения.
При вынужденной конвекции перемещение вещества происходит под действием насосов, лопастей вентилятора. Такая конвекция применяется в состоянии невесомости. Интенсивность конвекции зависит от разности температур слоев среды и агрегатного состояния вещества. Конвекционные потоки поднимаются вверх. При конвекции происходит перенос вещества.
В твердых телах конвекция невозможна, так как частицы не могут из-за сильного взаимодействия покидать свои места. В вакууме конвекция также невозможна.
Примером конвективных потоков в природе являются ветры (бризы дневной и ночной, муссоны).
Излучение (лучистый теплообмен) – перенос энергии электромагнитными волнами. Перенос тепла излучением возможен в вакууме. Источником излучения является любое тело, температура которого отлична от нуля К. При поглощении энергия теплового излучения переходит во внутреннюю энергию. Темные тела быстрее нагреваются излучением, чем тела с блестящей поверхностью, но и остывают быстрее. Мощность излучения зависит от температуры тела. С увеличением температуры тела энергия излучения увеличивается. Чем больше площадь поверхности тела, тем интенсивнее излучение.
Количество теплоты. Удельная теплоемкость вещества
Количество теплоты – это скалярная физическая величина, равная энергии, которую тело получило или отдало при теплопередаче.
Обозначение – \( Q \) , в СИ единица измерения – Дж.
Удельная теплоемкость – это скалярная физическая величина, численно равная количеству теплоты, которое тело массой 1 кг получает или отдает при изменении его температуры на 1 К.
Обозначение – \( c \) , в СИ единица измерения – Дж/(кг·К).
Удельная теплоемкость определяется не только свойствами вещества, но и тем, в каком процессе осуществляется теплопередача. Поэтому выделяют удельную теплоемкость газа при постоянном давлении – \( c_P \) и удельную теплоемкость газа при постоянном объеме – \( c_V \) . Для нагревания газа на 1 К при постоянном давлении требуется большее количество теплоты, чем при постоянном объеме – \( c_P > c_V \) .
Формула для вычисления количества теплоты, которое получает тело при нагревании или отдает при охлаждении:
где \( m \) – масса тела, \( c \) – удельная теплоемкость, \( T_2 \) – конечная температура тела, \( T_1 \) – начальная температура тела.
Важно!
При решении задач на расчет количества теплоты при нагревании или охлаждении можно не переводить температуру в кельвины. Так как 1К=1°С, то \( \Delta T=\Delta t \) .
Работа в термодинамике
Работа в термодинамике равна изменению внутренней энергии тела.
Обозначение работы газа – \( A’ \) , единица измерения в СИ – джоуль (Дж). Обозначение работы внешних сил над газом – \( A \) .
Работа газа \( A’ =-A \) .
Работой расширения идеального газа называют работу, которую газ совершает против внешнего давления.
Работа газа положительна при расширении и отрицательна при его сжатии. Если объем газа не изменяется (изохорный процесс), то работы газ не совершает.
Графически работа газа может быть вычислена как площадь фигуры под графиком зависимости давления от объема в координатных осях \( (p,V) \) , ограниченная графиком, осью \( V \) и перпендикулярами, проведенными из точек начального и конечного значений объема.
Формула для вычисления работы газа:
в изобарном процессе \( A’=p\cdot\Delta V. \)
в изотермическом процессе \( A’=\frac
Уравнение теплового баланса
Если система тел является теплоизолированной, то ее внутренняя энергия не будет изменяться несмотря на изменения, происходящие внутри системы. Если \( A \) = 0, \( Q \) = 0, то и \( \Delta U \) = 0 .
При любых процессах, происходящих в теплоизолированной системе, ее внутренняя энергия не изменяется (закон сохранения внутренней энергии).
Рассмотрим теплоизолированную систему из двух тел с разными температурами. При контакте между ними будет проходить теплообмен. Тело с большей температурой будет отдавать некоторое количество теплоты, а тело с меньшей температурой – получать, пока температуры тел не станут равными. Так как суммарная внутренняя энергия не должна изменяться, то, на сколько уменьшится внутренняя энергия более нагретого тела, на столько должна увеличиться внутренняя энергия второго тела. Так как работа не совершается, то изменение внутренней энергии равно количеству теплоты.
Количество теплоты, отданное при теплообмене телом с большей температурой, равно по модулю количеству теплоты, полученному телом с меньшей температурой:
Другая формулировка: если тела образуют замкнутую систему и между ними происходит только теплообмен, то алгебраическая сумма отданных \( Q_ <отд>\) и полученных \( Q_ <пол>\) количеств теплоты равна нулю:
Первый закон термодинамики
Закон сохранения и превращения энергии, распространенный на тепловые явления, называется первым законом (началом) термодинамики.
Можно дать формулировку этого закона исходя из способов изменения внутренней энергии.
Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:
Если рассматривать работу самой системы над внешними телами, то закон может быть сформулирован так:
количество теплоты, переданное системе, идет на изменение ее внутренней энергии и совершение системой работы над внешними телами:
Если система изолирована и над ней не совершается работа и нет теплообмена с внешними телами, то в этом случае внутренняя энергия не изменяется. Если к системе не поступает теплота, то работа системой может совершаться только за счет уменьшения внутренней энергии. Это значит, что невозможно создать вечный двигатель – устройство, способное совершать работу без каких-либо затрат топлива.
Первый закон термодинамики для изопроцессов
Изотермический процесс: \( Q=A’\,(T=const, \Delta U=0) \)
Физический смысл: все переданное газу тепло идет на совершение работы.
Изобарный процесс: \( Q=\Delta U+A’ \)
Физический смысл: подводимое к газу тепло идет на увеличение его внутренней энергии и на совершение газом работы.
Изохорный процесс: \( Q=\Delta U\,(V=const, A’=0) \)
Физический смысл: внутренняя энергия газа увеличивается за счет подводимого тепла.
Адиабатный процесс: \( \Delta U=-A’ \) или \( A=\Delta U\,\mathbf <(Q=0)>\)
Физический смысл: внутренняя энергия газа уменьшается за счет совершения газом работы. Температура газа при этом понижается.
Задачи об изменении внутренней энергии тел
Такие задачи можно разделить на группы:
- При взаимодействии тел изменяется их внутренняя энергия без совершения работы над внешней средой.
- Рассматриваются явления, связанные с превращением одного вида энергии в другой при взаимодействии двух тел. В результате происходит изменение внутренней энергии одного тела вследствие совершенной им или над ним работы.
При решении задач первой группы:
- установить, у каких тел внутренняя энергия уменьшается, а у каких – возрастает;
- составить уравнение теплового баланса \( (\Delta U=0) \) , при записи которого в выражении \( Q =cm(t_2 – t_1) \) для изменения внутренней энергии нужно вычитать из конечной температуры тела начальную и суммировать члены с учетом получающегося знака;
- решить полученное уравнение относительно искомой величины;
- проверить решение.
При решении задач второй группы:
- убедиться, что в процессе взаимодействия тел теплота извне к ним не подводится, т.е. действительно ли \( Q = 0 \) ;
- установить, у какого из двух взаимодействующих тел изменяется внутренняя энергия и что является причиной этого изменения – работа, совершенная самим телом, или работа, совершенная над телом;
- записать уравнение \( Q = \Delta U + A \) для тела, у которого изменяется внутренняя энергия, учитывая знак перед работой и КПД рассматриваемого процесса;
- если работа совершается за счет уменьшения внутренней энергии одного из тел, то \( А= -\Delta U \) , а если внутренняя энергия тела увеличивается за счет работы, совершенной над телом, то \( A=\Delta U \) ;
- найти выражения для \( \Delta U \) и \( A \) ;
- подставить в исходное уравнение вместо \( \Delta U \) и \( A \) выражения для них, получить окончательное соотношение для определения искомой величины;
- решить полученное уравнение относительно искомой величины;
- проверить решение.
Второй закон термодинамики
Все процессы в природе протекают только в одном направлении. В обратном направлении самопроизвольно они протекать не могут. Необратимым называется процесс, обратный которому может протекать только как составляющая более сложного процесса.
Примеры необратимых процессов:
- переход тепла от более нагретого тела к менее нагретому телу;
- переход механической энергии во внутреннюю энергию.
Первый закон термодинамики ничего не говорит о направлении процессов в природе.
Второй закон термодинамики выражает необратимость процессов, происходящих в природе. Существует несколько его формулировок.
Второй закон термодинамики (формулировка Клаузиуса):
невозможно перевести тепло от более холодной системы к более горячей при отсутствии одновременных изменений в обеих системах или окружающих телах.
Второй закон термодинамики (формулировка Кельвина):
невозможно осуществить такой периодический процесс, единственным результатом которого было бы получение работы за счет теплоты, взятой от одного источника.
Эта формулировка говорит также и о том, что невозможно построить вечный двигатель второго рода, то есть двигатель, совершающий работу за счет охлаждения какого-либо одного тела.
Важно!
В формулировке второго закона термодинамики большое значение имеют слова «единственным результатом». Если процессы, о которых идет речь, не являются единственными, то запреты снимаются. Например, в холодильнике происходит передача тепла от более холодного тела к нагретому и при этом осуществляется компенсирующий процесс превращения механической энергии окружающих тел во внутреннюю энергию.
Второй закон термодинамики выполняется для систем с огромным числом частиц. В системах с малым количеством частиц возможны флуктуации – отклонения от равновесия.
КПД тепловой машины
Коэффициентом полезного действия (КПД) тепловой машины (двигателя) называется отношение работы \( A \) , совершаемой двигателем за цикл, к количеству теплоты \( Q_1 \) , полученному за цикл от нагревателя:
Тепловая машина с максимальным КПД была создана Карно. В машине осуществляется круговой процесс (цикл Карно), при котором после ряда преобразований система возвращается в начальное состояние.
Цикл Карно состоит из четырех стадий:
- Изотермическое расширение (на рисунке — процесс 1–2). В начале процесса рабочее тело имеет температуру \( T_1 \) , то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передает ему количество теплоты \( Q_1 \) . При этом объем рабочего тела увеличивается.
- Адиабатное расширение (на рисунке — процесс 2–3). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника \( T_2 \) .
- Изотермическое сжатие (на рисунке — процесс 3–4). Рабочее тело, имеющее к тому времени температуру \( T_2 \) , приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты \( Q_2 \) .
- Адиабатное сжатие (на рисунке — процесс 4–1). Рабочее тело отсоединяется от холодильника. При этом его температура увеличивается до температуры нагревателя \( T_1 \) .
КПД цикла Карно:
Отсюда видно, что КПД цикла Карно с идеальным газом зависит только от температуры нагревателя \( (T_1) \) и холодильника \( (T_2) \) .
Из уравнения следуют выводы:
- для повышения КПД тепловой машины нужно увеличить температуру нагревателя и уменьшить температуру холодильника;
- КПД тепловой машины всегда меньше 1.
Цикл Карно обратим, так как все его составные части являются равновесными процессами.
КПД тепловых двигателей: двигатель внутреннего сгорания — 30%, дизельный двигатель — 40%, паровая турбина — 40%, газовая турбина — 25–30%.
Принципы действия тепловых машин
Тепловым двигателем называют устройство, преобразующее внутреннюю энергию топлива в механическую энергию.
Основные части теплового двигателя:
- Нагреватель – тело с постоянной температурой, преобразующее внутреннюю энергию топлива в энергию газа. В каждом цикле работы двигателя нагреватель передает рабочему телу некоторое количество теплоты.
- Рабочее тело – это газ, совершающий работу при расширении.
- Холодильник – тело с постоянной температурой, которому рабочее тело передает часть тепла.
Любая тепловая машина получает от нагревателя некоторое количество теплоты \( Q_1 \) и передает холодильнику количество теплоты \( Q_2 \) . Так как \( Q_1 > Q_2 \) , то совершается работа \( A’ = Q_1 – Q_2 \) .
Тепловой двигатель должен работать циклически, поэтому расширение рабочего тела должно сменяться его сжатием. Работа расширения газа должна быть больше работы сжатия, совершаемой внешними силами (условие совершения полезной работы). Температура газа при расширении должна быть выше, чем температура при сжатии. Тогда давление газа во всех промежуточных состояниях при сжатии будет меньше, чем при расширении.
В реальных тепловых машинах нагревателем является камера сгорания. В них рабочее тело нагревается за счет тепла, выделяющегося при сгорании топлива. Количество теплоты, выделяющееся при сгорании топлива, вычисляется по формуле:
где \( q \) – удельная теплота сгорания топлива, \( m \) – масса топлива.
Холодильником чаще всего у реальных двигателей служит атмосфера.
Виды тепловых двигателей:
- паровой двигатель;
- турбина (паровая, газовая);
- двигатель внутреннего сгорания (карбюраторный, дизельный);
- реактивный двигатель.
Тепловые двигатели широко используются на всех видах транспорта: на автомобилях – двигатели внутреннего сгорания; на железнодорожном транспорте – дизельные двигатели (на тепловозах); на водном транспорте – турбины; в авиации – турбореактивные и реактивные двигатели. На тепловых и атомных электростанциях тепловые двигатели приводят в движение роторы генераторов переменного тока.
Проблемы энергетики и охрана окружающей среды
Тепловые двигатели широко применяются на транспорте и в энергетике (тепловые и атомные электростанции). Использование тепловых двигателей сильно влияет на состояние биосферы Земли. Можно выделить следующие вредные факторы:
- при сжигании топлива используется кислород из атмосферы, что приводит к снижению содержания кислорода в воздухе;
- при сгорании топлива в атмосферу выделяется углекислый газ. Концентрация углекислого газа в атмосфере повышается. Это изменяет прозрачность атмосферы, так как молекулы углекислого газа поглощают инфракрасное излучение, что ведет к повышению температуры (парниковый эффект);
- при сжигании угля в атмосферу поступают азотные, серные соединения и соединения свинца, вредные для здоровья человека.
Решение проблемы охраны окружающей среды от вредного воздействия предприятий тепловой энергетики требует комплексного подхода. Массовыми загрязнителями при работе тепловых электростанций являются летучая зола, диоксид серы и оксиды азота. Методы сокращения выбросов зависят от свойств топлива и условия его сжижения. Предотвращение загрязнения летучей золой достигается очисткой всего объема продуктов сгорания твердого топлива в высокоэффективных золоуловителях. Сокращение выбросов оксидов азота с продуктами сгорания топлива на тепловых электростанциях, а также в парогазовых и газотурбинных установках обеспечивается, главным образом, технологией сжигания топлива. Уменьшение выброса диоксида серы может быть достигнуто различными методами облагораживания и переработки топлива вне тепловых электростанций либо непосредственно на тепловых электростанциях, а также очисткой дымовых газов.
Контроль за выбросом вредных веществ электростанций осуществляется специальными приборами.
В ряде случаев достаточно эффективным решением вопросов очистки выбросов в атмосферу остается сооружение фильтров-уловителей и дымовых труб. У дымовой трубы два назначения: первое — создавать тягу и тем самым заставлять воздух — обязательный участник процесса горения — в нужном количестве и с должной скоростью входить в топку; второе — отводить продукты горения (вредные газы и имеющиеся в дыме твердые частицы) в верхние слои атмосферы. Благодаря непрерывному турбулентному движению вредные газы и твердые частицы уносятся далеко от источника их возникновения и рассеиваются.
Для рассеивания сернистого ангидрида, содержащегося в дымовых трубах тепловых электростанций, сооружаются дымовые трубы высотой 180, 250 и 320 м. Тепловые электростанции России, работающие на твердом топливе, за год выбрасывают в отвалы около 100 млн т золы и шлаков. Зола и шлаки занимают большие площади земель, неблагоприятно влияют на окружающую среду.
Более половины всех загрязнений создает транспорт. Один из путей решения проблемы защиты окружающей среды заключается в переходе на дизельные двигатели, электродвигатели, повышение КПД.
Алгоритм решения задач раздела «Термодинамика»:
- выделить систему тел и определить ее тип (замкнутая, адиабатически замкнутая, замкнутая в механическом смысле, незамкнутая);
- выяснить, как изменяются параметры состояния \( (p,V,T) \) и внутренняя энергия каждого тела системы при переходе из одного состояния в другое;
- записать уравнения, связывающие параметры двух состояний системы, формулы для расчета изменения внутренней энергии каждого тела системы при переходе из одного состояния в другое;
- определить изменение механической энергии системы и работу внешних сил по изменению ее объема;
- записать формулу первого закона термодинамики или закона сохранения и превращения энергии;
- решить систему уравнений относительно искомой величины;
- проверить решение.
Источник