Процесс ПЕРЕМЕШИВАНИЯ
Смешивание или перемешивание – механический процесс равномерного распределения отдельных компонентов во всем объеме смеси под действием внешних сил. Применяется в пищевой промышленности для приготовления эмульсий, суспензий и получения гомогенных систем (растворов), а также для интенсификации биохимических, тепловых и диффузионных процессов.
Процесс смешивания материалов зависит от конструкции смесителя и заключается в выравнивании концентраций каждого из компонентов смеси по всему объему рабочей камеры с образованием в конечном итоге однородной смеси.
Способы перемешивания.
Различают два основных способа перемешивания в жидких средах: механический (во вращающемся резервуаре смесителя, с помощью мешалок различных конструкций (лопасти, винты, ножи, шнеки и др.)) и пневматический (сжатым воздухом, паром или инертным газом). Кроме того, применяют перемешивание в трубопроводах и перемешивание с помощью сопел и насосов, ультразвуком или гидродинамическим эффектом и др.
Смешивание твердых сыпучих материалов является скорее механическим, чем гидродинамическим процессом.
Для смесителя конфигурацию и форму лопастей выбирают, учитывая состояние перемешиваемой массы, ее объем, толщину слоя, производительность, соотношение смешиваемых компонентов, степень однородности, способ загрузки и выгрузки продукта, требования технологии.
При использовании перемешивания для интенсификации биохимических, тепловых и диффузионных процессов в гетерогенных системах создаются лучшие условия для подвода вещества в зону реакции, к границе раздела фаз или к поверхности теплообмена.
Увеличение степени турбулентности системы, достигаемое при перемешивании, приводит к уменьшению толщины пограничного слоя, увеличению и непрерывному обновлению поверхности взаимодействующих фаз. Это вызывает существенное ускорение процессов тепло- и массообмена.
Критерии эффективности процесса смешивания.
Наиболее важными характеристиками перемешивающих устройств, которые могут быть положены в основу их сравнительной оценки, являются: эффективность перемешивающего устройства и интенсивность его действия.
Эффективность перемешивающего устройства характеризует качество проведения процесса перемешивания. Например, в процессax получения суспензий эффективность перемешивания характеризуется степенью равномерности распределения твердой фазы в объеме аппарата; при интенсификации тепловых и диффузионных процессов — отношением коэффициентов тепло- или массоотдачи при перемешивании без него. На эффективность смешивания влияют плотность исходных компонентов, гранулометрический состав (форма, размеры, дисперсионное распределение по степени крупности для неоднородных компонентов) частиц компонентов смеси, влажность компонентов, состояние поверхности частиц, силы трения и адгезии поверхности частиц и т.д.
Интенсивность перемешивания определяется временем достижения заданного технологического результата или числом оборотов мешалки при фиксированной продолжительности процесса (для механических мешалок). Чем выше интенсивность перемешивания, тем меньше времени требуется для достижения заданного эффекта перемешивания. Интенсификация процессов перемешивания приводит к уменьшению размеров проектируемой аппаратуры и увеличению производительности действующей.
В идеальном случае должна быть получена смесь, в которой в любой ее точке к каждой частице одного компонента примыкают частицы других компонентов, причем в количествах, которые определены заданным их соотношением. В действительности такого идеального расположения частиц практически не бывает, т. к. огромное число различных факторов влияет на их перемешивание. Возможно бесконечное разнообразие взаимного расположения частиц, поэтому соотношение компонентов в любых точках смеси будет случайной величиной. Поскольку законы взаимного расположения частиц для систем со многими случайными величинами весьма сложны, на практике статистический материал анализируют по одной случайной величине, т. е. по распределению одного из компонентов.
Для того чтобы оценить качество смешивания одной случайной величиной, смесь условно считают двухкомпонентной. Обычно выделяют один компонент, называемый ключевым, а все остальные объединяют во второй условный. Таким образом, в двухкомпонентной смеси случайной величиной х является содержание ключевого компонента в микрообъеме. К ключевому компоненту предъявляют такие требования: сравнительная простота определения его содержания в пробе; небольшое его количество; физические свойства должны отличаться от свойств остальных компонентов.
Наибольшее распространение в качестве критерия оценки качества смешивания получил коэффициент вариации (неоднородности):
(1)
где — среднее содержание ключевого компонента в пробах;
— значение случайной величины х в i-ом опыте; n — количество отобранных проб.
Смесь считается однородной, если в каждой пробе количество компонента х будет равно , то
. И наоборот, чем больше значение
, тем менее однородна смесь.
Периодическое смешивание. В смесителях периодического действия смешиванию подвергается смесь, составленная из различных компонентов.
Процесс смешивания складывается из элементарных процессов:
— перемещения группы смежных частиц из одного места смеси в другое внедрением, скольжением слоев (так называемое конвективное смешивание);
— постепенное перераспределение частиц через свежеобразованную границу их раздела (так называемое диффузионное смешивание);
— сосредоточение частиц, имеющих близкую массу и размеры, в соответствующих местах смесителя под действием инерционных, гравитационных сил (сегрегация частиц).
Если первые два процесса способствуют улучшению качества смеси, то последний препятствует этому. В смесителе одновременно протекают все три процесса, но их влияние в разные периоды смешивания неодинаково. Процесс конвективного смешивания в первые моменты идет с большой скоростью, процессу конвективного смешивания соответствует I участок (рис. 1). Между компонентами смеси величина поверхности раздела еще невелика и доля диффузионного смешивания незначительна.
На участке конвективного смешивания скорость процесса почти не зависит от физико-механических свойств смеси, т. к. процесс смешивания идет на уровне макрообъемов.
Главное влияние на скорость процесса смешивания в эти моменты времени оказывает характер движения потоков частиц в смесителе, который зависит от конструкции и параметров смесителя.
После того как компоненты в основном будут распределены по рабочему объему смесителя, процессы конвективного и диффузионного смешивания становятся по их влиянию на общий процесс смешивания сопоставимы. В это время процесс перераспределения частиц идет уже на уровне макрообъемов. Начиная с некоторого момента, процесс диффузионного смешивания становится преобладающим (II участок на рис. 1). Существенное влияние на процесс начинает оказывать сегреграция частиц.
В какой-то момент времени эти процессы могут уравновеситься, после чего дальнейшее перемешивание теряет смысл, и процесс должен быть закончен (III участок на рис. 1).
Продолжительность диффузионного смешивания зависит и от физико-механических свойств смеси, из которых наибольшее значение имеют гранулометрический состав, плотность, форма и характер поверхности частиц, их влажность и сыпучесть. Чем ближе у компонентов указанные свойства, тем эффективнее их смешивание. Большее различие в размерах, плотности способствует сегрегации частиц. Имеет значение также число компонентов. С их увеличением доля каждого уменьшается, а процесс смешивания затрудняется.
Большая продолжительность смешивания необходима для равномерного распределения компонентов, входящих в состав смеси в малых количествах. Естественно, что компоненты с большей дисперсностью, содержащие в единице объема большее количество частиц, распределяются лучше.
В различных отраслях пищевой промышленности возникает необходимость в перемешивании жидких продуктов: для смешивания двух или нескольких жидкостей, сохранения определенного технологического состояния эмульсий и суспензий, растворения или равномерного распределения твердых продуктов в жидкости, интенсификации тепловых процессов или биохимических реакций, получения или поддержания определенной температуры или консистенции жидкостей и т. д.
Смешивание пищевых продуктов осуществляется в смесителях следующих типов: шнековых, лопастных, барабанных, пневматических (сжатым воздухом) и комбинированных.
Смесители классифицируются (рис. 2):
– по назначению: для смешивания, растворения, темперирования и т. д.;
– расположению аппарата: вертикальные, горизонтальные, наклонные, специальные;
– характеру обработки рабочей среды: смешивание одновременно во всем объеме, в части объема и пленочное смешивание;
|
Рис. 11.2. Классификация смесителей
– характеру движения жидкости в аппарате: радиальное, осевое, тангенциальное и смешанное;
– принципу действия: механические, пневматические, эжекторные, циркуляционные и специальные.
Для тонкого измельчения и перемешивания мясного сырья используют куттер-мешалку. Кусковые вязкие и вязкопластичные продукты (мука, мясо, мясной фарш, творожно-сырковая масса) перемешивают шнеками, лопастями в барабанных и других смесителях. Жидкие продукты (молоко, сливки, сметана и др.) перемешивают в емкостях лопастными, пропеллерными и турбинными мешалками.
Источник
ПЕРЕМЕШИВАНИЕ. СПОСОБЫ ПЕРЕМЕШИВАНИЯ В ЖИДКОЙ СРЕДЕ
Для перемешивания жидких сред используют несколько способов: пневматический, циркуляционный, статический и механический с помощью мешалок.
Пневматическое перемешиваниеосуществляют с помощью сжатого газа (в большинстве случаев воздуха), пропускаемого через слой перемешиваемой жидкости. Для равномерного распределения газа в слое жидкости газ подается в смеситель через барботер. Барботер представляет собой ряд перфорированных труб, расположенных у днища смесителя по окружности или спирали.
В ряде случаев перемешивание осуществляется с помощью эжекторов.
Интенсивность перемешивания определяется количеством газа, пропускаемого в единицу времени через единицу свободной поверхности жидкости в смесителе.
Циркуляционное перемешиваниеосуществляют с помощью насоса, перекачивающего жидкость по замкнутой системе смеситель — насос — смеситель.
В ряде случаев вместо насосов могут применяться паровые эжекторы.
Статическое смешиваниежидкостей невысокой вязкости, а также газа с жидкостью осуществляется в статических смесителях за счет кинетической энергии жидкостей или газов.
Статические смесители устанавливают в трубопроводах перед реактором или другой аппаратурой или непосредственно в реакционном аппарате.
Простейшими статическими смесителями являются устройства с винтовыми вставками различной конструкции.Статические смесители используют также при получении эмульсий.
Механическое перемешиваниеиспользуют для интенсификации гидромеханических процессов (диспергирования), тепло- и массооб-менных, биохимических процессов в системах жидкость — жидкость, газ — жидкость и газ — жидкость — твердое тело. Осуществляют его с помощью различных перемешивающих устройств — мешалок. Мешалка представляет собой комбинацию лопастей, насаженных на вращающийся вал.
Все перемешивающие устройства, применяемые в пищевых производствах, можно разделить на две группы: в первую группу входят лопастные, турбинные и пропеллерные, во вторую — специальные — винтовые, шнековые, ленточные, рамные, ножевые идругие, служащие для перемешивания пластичных и сыпучих масс.
Лопастные (рис. 11.2, а, б), ленточные, якорные и шнековые мешалки относятся к тихоходным: частота их вращения составляет 30. 90 мин
г , окружная скорость на конце лопасти для вязких жидкостей — 2.. .3 м/с.
Преимущества лопастных мешалок — простота устройства и невысокая стоимость.
Якорные мешалки имеют форму днища аппарата. Их применяют при перемешивании вязких сред. Эти мешалки при перемешивании очищают стенки и дно смесителя от налипающих загрязнений.
Шнековые мешалки имеют форму винта и применяются, как и ленточные, для перемешивания вязких сред.
30. АДСОРБЕРЫ С ПСЕВДООЖИЖЕННЫМ СЛОЕМ АДСОРБЕНТА. НАЗНАЧЕНИЕ, УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ.
Адсорберы непрерывного действиябывают с движущимся плотным или псевдоожиженным слоем адсорбента.
Адсорберы с движущимся слоем зернистого адсорбента представляют собой полые колонны с перегородками и переливными патрубками и аппараты с транспортирующими приспособлениями (см. главу 20). На рис. 21.7 показан многосекционный колонный адсорбер для очистки парогазовых смесей, состоящий из холодильника, подогревателя и распределительных тарелок.
В первой секции адсорбент охлаждается после регенерации. Эта секция выполнена в виде кожухотрубчатого теплообменника. Охлаждающая жидкость подается в межтрубное пространство теплообменника, а адсорбент проходит по трубам.
Вторая секция представляет собой собственно адсорбер, в котором адсорбент взаимодействует с исходной парогазовой смесью. Из первой секции во вторую адсорбент перетекает через патрубки и распределительные тарелки, обеспечивающие равномерное распределение адсорбента по сечению колонны и служащие затворами, разграничивающими первую и вторую секции. Далее адсорбент поступает в десорбцион-ную секцию, представляющую собой кожухотрубный теплообменник, в которой нагревается и взаимодействует с десорбирующим агентом — острым водяным паром. Регенерированный адсорбент удаляется из адсорбера через шлюзовой затвор.
Адсорберы с псевдоожиженным тонкозернистым адсорбентом бывают одноступенчатыми и многоступенчатыми.
Одноступенчатый адсорбер с псевдоожиженным слоем показан на рис. 21.8. Он представляет собой цилиндрический вертикальный корпус, внутри которого смонтированы газораспределительная решетка и пылеулавливающее устройство типа циклона. Адсорбент загружается в аппарат сверху через трубу и выводится через трубу снизу. Исходная парогазовая смесь вводится в адсорбер при скорости, превышающей скорость начала псевдоожижения, под газораспределительную решетку через нижний патрубок, а выводится через верхний патрубок, пройдя предварительно пылеулавливающее устройство.Многоступенчатый тарельчатый адсорбер с псевдоожиженным слоем показан на рис. 21.9. Он представляет собой колонну, в которой расположены газораспределительные решетки с переливными патрубками, служащими одновременно затворами для газового потока. Адсорбент поступает в верхнюю часть адсорбера и перетекает с верхней тарелки на нижнюю. С нижней тарелки адсорбент через шлюзовой затвор выгружается из адсорбера. Исходная парогазовая смесь поступает в адсорбер снизу и удаляется через верхний патрубок.Многоступенчатый адсорбер отличается от одноступенчатого тем, что работает по схеме, близкой к аппаратам идеального вытеснения, что позволяет проводить процесс адсорбции в противотоке. Применяют установки с адсорбцией с псевдоожиженным слоем и десорбцией в движущемся слое адсорбента.
Периодического действия. Адсорбер с псевдоожиженным слоем заполнен мелкозернистым адсорбентом Исходная смесь подается снизу под распределительную решетку при скорости, превышающей скорость псевдоожижения частиц адсорбента При этом слой расширяется и переходит в подвижное состояние Проведение адсорбции в псевдоожиженном слое значительно интенсифицирует процесс массообмена и сокращает продолжительность процесса
Источник