Простой способ вычитания дробей с разными знаменателями

Содержание
  1. Вычитание дробей
  2. Вычитание дробей с одинаковыми знаменателями
  3. Вычитание правильной дроби из единицы
  4. Вычитание правильной дроби из целого числа
  5. Вычитание смешанных чисел
  6. Первый случай вычитания смешанных чисел
  7. Второй случай вычитания смешанных чисел
  8. Третий случай вычитания смешанных чисел
  9. Вычитание дробей
  10. Понятие дроби
  11. Основные свойства дробей
  12. Правило вычитания дробей
  13. Вычитание дробей с одинаковыми знаменателями
  14. Вычитание дробей с разными знаменателями
  15. Вычитание обыкновенной дроби из натурального числа
  16. Вычитание натурального числа из обыкновенной дроби
  17. Вычитание дробей. Вычитание дробей с разными знаменателями.
  18. Вычитание дробей с одинаковым знаменателем.
  19. Вычитание дробей с разными знаменателями.
  20. Вычитание обыкновенных дробей: правила, примеры, решения
  21. Как найти разность дробей с одинаковыми знаменателями
  22. Как найти разность дробей с разными знаменателями
  23. Как вычесть из обыкновенной дроби натуральное число
  24. Как вычесть обыкновенную дробь из натурального числа
  25. Свойства вычитания при работе с дробями

Вычитание дробей

При вычитании дробей, как и при сложении, могут встретиться несколько случаев.

Вычитание дробей с одинаковыми знаменателями

При вычитании дробей с одинаковыми знаменателями от числителя уменьшаемого (первой дроби) отнимают числитель вычитаемого (второй дроби), а знаменатель оставляют прежним.

Прежде чем записать конечный ответ, проверьте, нельзя ли сократить полученную дробь.

В буквенном виде правило вычитания дробей с одинаковыми знаменателями записывают так:

Вычитание правильной дроби из единицы

Когда нужно вычесть из единицы правильную дробь, единицу представляют в виде неправильной дроби, знаменатель которой, равен знаменателю вычитаемой дроби.

Знаменатель вычитаемой дроби равен 7 , значит, единицу представляют как неправильную дробь

7
7

и вычитают по правилу вычитания дробей с одинаковыми знаменателями.

Вычитание правильной дроби из целого числа

Чтобы из целого числа вычесть правильную дробь нужно представить это натуральное число в виде смешанного числа.

Для этого занимаем единицу в натуральном числе и представляем её в виде неправильной дроби, знаменатель которой равен знаменателю вычитаемой дроби.

В примере единицу мы заменили неправильной дробью

7
7

и вместо 3 записали смешанное число и от дробной части отняли дробь.

Вычитание смешанных чисел

При вычитании смешанных чисел отдельно из целой части вычитают целую часть, а из дробной части вычитают дробную часть.

При подобных расчётах могут встретиться разные случаи.

Первый случай вычитания смешанных чисел

У дробных частей одинаковые знаменатели и числитель дробной части уменьшаемого (из чего вычитаем) больше или равен числителю дробной части вычитаемого (что вычитаем).

Второй случай вычитания смешанных чисел

У дробных частей разные знаменатели.

В этом случае вначале нужно привести к общему знаменателю дробные части, а затем выполнить вычитание целой части из целой, а дробной из дробной.

Третий случай вычитания смешанных чисел

Дробная часть уменьшаемого меньше дробной части вычитаемого.

Так как у дробных частей разные знаменатели, то как и во втором случае, вначале приведём обыкновенные дроби к общему знаменателю.

Числитель дробной части уменьшаемого меньше числителя дробной части вычитаемого.

Сложим полученную неправильную дробь

18
18

и дробную часть уменьшаемого и получим:

Все рассмотренные случаи можно описать с помощью правил вычитания смешанных чисел.

  • Привести дробные части уменьшаемого и вычитаемого к наименьшему общему знаменателю.
  • Если дробная часть уменьшаемого меньше дробной части вычитаемого, то занимаем у целой части уменьшаемого единицу. Эту единицу превращаем в неправильную дробь с одинаковым числителем и знаменателем равными наименьшему общему знаменателю.
  • Прибавляем полученную неправильную дробь к дробной части уменьшаемого.
  • Вычитаем из целой части целую, а из дробной — дробную.
  • Проверяем, нельзя ли сократить и выделить целую часть в конечной дроби.

Источник

Вычитание дробей

О чем эта статья:

4 класс, 5 класс, 6 класс

Понятие дроби

Дробь — одна из форм представления числа в математике. Это запись, в которой a и b являются числами или выражениями. Есть два формата записи:

  • обыкновенный вид — 1/2 или a/b,
  • десятичный вид — 0,5.

Над чертой принято писать делимое, которое является числителем. А под чертой всегда находится делитель, который называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел, например, 5/9 или (1,5 — 0,2)/15.
  2. Алгебраические — состоят из переменных, например, (x + y)/(x — y). В этом случае значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например 3/7 и 31/45.

Неправильной — ту, у которой числитель больше знаменателя или равен ему. Например, 21/4. Такое число является смешанным и читается, как пять целых одна четвертая, а записывается — 5 1\4.

Читайте также:  Тестостерон способы его повышения

Основные свойства дробей

1. Дробь не имеет значения, при условии, если делитель равен нулю.

2. Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

3. Равными называют a/b и c/d в том случае, если a * d = b * c.

4. Если числитель и знаменатель умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Правило вычитания дробей

Вычитание — арифметическое действие, когда от одного числа отнимают другое.

Свойства вычитания:

  1. Чтобы вычесть сумму из числа, можно из него вычесть одно слагаемое, а после из результата вычесть другое слагаемое:
    a — (b + c) = (a — b) — c,
    a — (b + c) = (a — с) — b.
  1. Скобки в выражении (a — b) — c не имеют значения и их можно опустить:
    (a — b) — c = a — b — c.
  1. Чтобы вычесть число из суммы, можно вычесть его из одного слагаемого, а к результату прибавить оставшееся:
    (a + b) — c = (a — c) + b, если a > c или а = с,
    (a + b) — c = (b — c) + a, если b > c или b = с.
  1. Если из числа вычесть нуль, получится оно же:
    a — 0 = a.
  1. Если из числа вычесть его само, получится нуль:
    a — a = 0.

Записывайтесь на наши дополнительные занятия по математике, для учеников с 1 по 11 классы!

Вычитание дробей с одинаковыми знаменателями

Для вычитания дробей с одинаковыми знаменателями нужно от числителя первой отнять числитель второй, а знаменатель оставить тот же.

Прежде, чем зафиксировать ответ, важно проверить возможность сокращения.

Рассмотрим это правило на примере:

Вычитание дробей с разными знаменателями

Как вычитать дроби с разными знаменателями? Для этого приводим их к общему знаменателю и гаходим разность числителей.

Рассмотрим пример, в котором нужно найти разность 2/9 и 1/15.

Как решаем:

  • Знаменатели разные, значит найдем наименьшее общее кратное (далее — НОК) для определения единого делителя. Для этого записываем в столбик числа, которые в сумме дают значения делителей. Далее перемножаем полученное и получаем НОК.

НОК (9, 15) = 3 * 3 * 5 = 45

  • Найдем дополнительные множители. Для этого НОК делим на каждый знаменатель:
  • Полученные числа умножим на соответствующие дроби:
  • Перейдем к вычитанию заданных чисел:

Вычитание обыкновенной дроби из натурального числа

Для вычитания из обыкновенной дроби натурального числа необходимо это действие привести к вычитанию обыкновенных дробей.

Разберем для наглядности пример разности 3 и 6/7.

Как решаем:

  • Представим натуральное число в виде смешанного — займем единицу и переведем ее в неправильную дробь с тем же знаменателем, что у вычитаемой:

Ответ: две целых одна седьмая.

Вычитание натурального числа из обыкновенной дроби

Для вычитания натурального числа из обыкновенной дроби нужно последовать тому же алгоритму, что и в предыдущем примере. А именно: перевести натуральное число в вид дроби, привести все к единому знаменателю, найти разность.

Рассмотрим пример разности 3 из 83/21.

Как решаем:

А еще можно вот так:

  • Представим 83/21 в виде смешанной дроби, для этого разделим делитель на делимое:

3 * 20/21 — 3 = 20/21

Если урок в самом разгаре и посчитать нужно быстро — можно воспользоваться онлайн-калькулятором. Вот несколько подходящих:

Прибавление и вычитание дробей — смежные темы: принципы и закономерности очень похожи. Чтобы закрепить знания, нужно решать примеры сложения дробей, как можно чаще.

Источник

Вычитание дробей. Вычитание дробей с разными знаменателями.

Следующее действие, которое можно выполнять с обычными дробями это вычитание. Вычитание дробей выполняется по нескольким правилам. Рассмотрим эти правила подробнее. Вычитание смешанных дробей с разными знаменателями можно посмотреть нажав на ссылку.

Вычитание дробей с одинаковым знаменателем.

Рассмотрим, пока примеры в которых уменьшаемое больше вычитаемого.

Чтобы выполнить вычитание дробей с одинаковыми знаменателями, нужно посчитать разность числителя уменьшаемого и вычитаемого, а знаменатель оставить без изменения.

Вычитание дробей с разными знаменателями.

Чтобы выполнить вычитание дробей с разными знаменателями, нужно привести дроби к общему знаменателю, а потом применить правило вычитания дробей с одинаковыми знаменателями.

Выполните вычитание дробей \(\frac<5><6>\) и \(\frac<1><2>\).

Общий знаменатель этих двух дробей latex]\frac<5><6>[/latex] и \(\frac<1><2>\) равен 6. Умножим вторую дробь \(\frac<1><2>\) на дополнительный множитель 3.

Дробь \(\frac<2><6>\) сократили и получили \(\frac<1><3>\).

Буквенная формула вычитания дробей с разными знаменателями.

Вопросы по теме:
Как вычитать дроби с разными знаменателями?
Ответе: нужно найти общий знаменатель и далее по правилу выполнить вычитание дробей с одинаковыми знаменателями.

Как выполнить вычитание дробей с одинаковыми знаменателями?
Ответ: у числителей посчитать разность, а знаменатель оставить тот же.

Как правильно сделать проверку вычитания двух дробей?
Ответ: для проверки правильности вычитания дробей, нужно выполнить сложение вычитаемого и разности, результат их суммы будет равен вычитаемому.

Пример №1:
Выполните вычитание дробей: а) \(\frac<1><2>-\frac<1><2>\) б) \(\frac<10><19>-\frac<7><19>\)

При вычитание двух одинаковых дробей получаем нуль.

Пример №2:
Выполните вычитание и проверьте сложением: а) \(\frac<13><21>-\frac<3><7>\) б) \(\frac<2><3>-\frac<1><5>\)
Решение:

а)Найдем общий знаменатель дробей \(\frac<13><21>\) и \(\frac<3><7>\), он будет равен 21. Умножим вторую дробь \(\frac<3><7>\) на 3.

Выполним проверку вычитания:

б) Найдем общий знаменатель дробей \(\frac<2><3>\) и \(\frac<1><5>\), он будет равен 15. Умножим первую дробь \(\frac<2><3>\) на дополнительный множитель 5, вторую дробь \(\frac<1><5>\) на 3.

Источник

Вычитание обыкновенных дробей: правила, примеры, решения

Следующее действие, которое можно выполнять с обыкновенными дробями, — вычитание. В рамках этого материала мы рассмотрим, как правильно вычислить разность дробей с одинаковыми и разными знаменателями, как вычесть дробь из натурального числа и наоборот. Все примеры будут проиллюстрированы задачами. Заранее уточним, что мы будем разбирать лишь случаи, когда разность дробей дает в итоге положительное число.

Как найти разность дробей с одинаковыми знаменателями

Начнем сразу с наглядного примера: допустим, у нас есть яблоко, которое разделили на восемь частей. Оставим пять частей на тарелке и заберем две из них. Это действие можно записать так:

В итоге у нас осталось 3 восьмых доли, поскольку 5 − 2 = 3 . Получается, что 5 8 — 2 8 = 3 8 .

Благодаря этому простому примеру мы увидели, как именно работает правило вычитания для дробей, знаменатели которых одинаковы. Сформулируем его.

Чтобы найти разность дробей с одинаковыми знаменателями, нужно из числителя одной вычесть числитель другой, а знаменатель оставить прежним. Это правило можно записать в виде a b — c b = a — c b .

Такую формулу мы будем использовать и в дальнейшем.

Возьмем конкретные примеры.

Вычтите из дроби 24 15 обыкновенную дробь 17 15 .

Решение

Мы видим, что эти дроби имеют одинаковые знаменатели. Поэтому все, что нам нужно сделать, – это вычесть 17 из 24 . Мы получаем 7 и дописываем к ней знаменатель, получаем 7 15 .

Наши подсчеты можно записать так: 24 15 — 17 15 = 24 — 17 15 = 7 15

Если необходимо, можно сократить сложную дробь или выделить целую часть из неправильной, чтобы считать было удобнее.

Найдите разность 37 12 — 15 12 .

Решение

Воспользуемся описанной выше формулой и подсчитаем: 37 12 — 15 12 = 37 — 15 12 = 22 12

Легко заметить, что числитель и знаменатель можно разделить на 2 (об этом мы уже говорили ранее, когда разбирали признаки делимости). Сократив ответ, получим 11 6 . Это неправильная дробь, из которой мы выделим целую часть: 11 6 = 1 5 6 .

Как найти разность дробей с разными знаменателями

Такое математическое действие можно свести к тому, что мы уже описывали выше. Для этого просто приведем нужные дроби к одному знаменателю. Сформулируем определение:

Чтобы найти разность дробей, у которых разные знаменатели, необходимо привести их к одному знаменателю и найти разность числителей.

Рассмотрим на примере, как это делается.

Вычтите из 2 9 дробь 1 15 .

Решение

Знаменатели разные, и нужно привести их к наименьшему общему значению. В данном случае НОК равно 45 . Для первой дроби необходим дополнительный множитель 5 , а для второй – 3 .

Подсчитаем: 2 9 = 2 · 5 9 · 5 = 10 45 1 15 = 1 · 3 15 · 3 = 3 45

У нас получились две дроби с одинаковым знаменателем, и теперь мы легко можем найти их разность по описанному ранее алгоритму: 10 45 — 3 45 = 10 — 3 45 = 7 45

Краткая запись решения выглядит так: 2 9 — 1 15 = 10 45 — 3 45 = 10 — 3 45 = 7 45 .

Не стоит пренебрегать сокращением результата или выделением из него целой части, если это необходимо. В данном примере нам этого не нужно делать.

Найдите разность 19 9 — 7 36 .

Решение

Приведем указанные в условии дроби к наименьшему общему знаменателю 36 и получим соответственно 76 9 и 7 36 .

Считаем ответ: 76 36 — 7 36 = 76 — 7 36 = 69 36

Результат можно сократить на 3 и получить 23 12 . Числитель больше знаменателя, а значит, мы можем выделить целую часть. Итоговый ответ — 1 11 12 .

Краткая запись всего решения — 19 9 — 7 36 = 1 11 12 .

Как вычесть из обыкновенной дроби натуральное число

Такое действие также легко свести к простому вычитанию обыкновенных дробей. Это можно сделать, представив натуральное число в виде дроби. Покажем на примере.

Найдите разность 83 21 – 3 .

Решение

3 – то же самое, что и 3 1 . Тогда можно подсчитать так: 83 21 — 3 = 20 21 .

Если в условии необходимо вычесть целое число из неправильной дроби, удобнее сначала выделить из нее целое, записав ее в виде смешанного числа. Тогда предыдущий пример можно решить иначе.

Из дроби 83 21 при выделении целой части получится 83 21 = 3 20 21 .

Теперь просто вычтем 3 из него: 3 20 21 — 3 = 20 21 .

Как вычесть обыкновенную дробь из натурального числа

Это действие делается аналогично предыдущему: мы переписываем натуральное число в виде дроби, приводим обе к единому знаменателю и находим разность. Проиллюстрируем это примером.

Найдите разность: 7 — 5 3 .

Решение

Сделаем 7 дробью 7 1 . Делаем вычитание и преобразуем конечный результат, выделяя из него целую часть: 7 — 5 3 = 5 1 3 .

Есть и другой способ произвести расчеты. Он обладает некоторыми преимуществами, которыми можно воспользоваться в тех случаях, если числители и знаменатели дробей в задаче – большие числа.

Если та дробь, которую нужно вычесть, является правильной, то натуральное число, из которого мы вычитаем, нужно представить в виде суммы двух чисел, одно из которых равно 1 . После этого нужно вычесть нужную дробь из единицы и получить ответ.

Вычислите разность 1 065 — 13 62 .

Решение

Дробь, которую нужно вычесть – правильная, ведь ее числитель меньше знаменателя. Поэтому нам нужно отнять единицу от 1065 и вычесть из нее нужную дробь: 1065 — 13 62 = ( 1064 + 1 ) — 13 62

Теперь нам нужно найти ответ. Используя свойства вычитания, полученное выражение можно записать как 1064 + 1 — 13 62 . Подсчитаем разность в скобках. Для этого единицу представим как дробь 1 1 .

Получается, что 1 — 13 62 = 1 1 — 13 62 = 62 62 — 13 62 = 49 62 .

Теперь вспомним про 1064 и сформулируем ответ: 1064 49 62 .

Используем старый способ, чтобы доказать, что он менее удобен. Вот такие вычисления вышли бы у нас:

1065 — 13 62 = 1065 1 — 13 62 = 1065 · 62 1 · 62 — 13 62 = 66030 62 — 13 62 = = 66030 — 13 62 = 66017 62 = 1064 4 6

Ответ тот же, но подсчеты, очевидно, более громоздкие.

Мы рассмотрели случай, когда нужно вычесть правильную дробь. Если она неправильная, мы заменяем ее смешанным числом и производим вычитание по знакомым правилам.

Вычислите разность 644 — 73 5 .

Решение

Вторая дробь – неправильная, и от нее надо отделить целую часть.

Теперь вычисляем аналогично предыдущему примеру: 630 — 3 5 = ( 629 + 1 ) — 3 5 = 629 + 1 — 3 5 = 629 + 2 5 = 629 2 5

Свойства вычитания при работе с дробями

Те свойства, которыми обладает вычитание натуральных чисел, распространяются и на случаи вычитания обыкновенных дробей. Рассмотрим, как использовать их при решении примеров.

Найдите разность 24 4 — 3 2 — 5 6 .

Решение

Схожие примеры мы уже решали, когда разбирали вычитание суммы из числа, поэтому действуем по уже известному алгоритму. Сначала подсчитаем разность 25 4 — 3 2 , а потом отнимем от нее последнюю дробь:

25 4 — 3 2 = 24 4 — 6 4 = 19 4 19 4 — 5 6 = 57 12 — 10 12 = 47 12

Преобразуем ответ, выделив из него целую часть. Итог — 3 11 12 .

Краткая запись всего решения:

25 4 — 3 2 — 5 6 = 25 4 — 3 2 — 5 6 = 25 4 — 6 4 — 5 6 = = 19 4 — 5 6 = 57 12 — 10 12 = 47 12 = 3 11 12

Если в выражении присутствуют и дроби, и натуральные числа, то рекомендуется при подсчетах сгруппировать их по типам.

Н айдите разность 98 + 17 20 — 5 + 3 5 .

Решение

Зная основные свойства вычитания и сложения, мы можем сгруппировать числа следующим образом: 98 + 17 20 — 5 + 3 5 = 98 + 17 20 — 5 — 3 5 = 98 — 5 + 17 20 — 3 5

Завершим расчеты: 98 — 5 + 17 20 — 3 5 = 93 + 17 20 — 12 20 = 93 + 5 20 = 93 + 1 4 = 93 1 4

Источник

Читайте также:  Полимерпесчаная плитка способ изготовления
Оцените статью
Разные способы