Виды проницаемости
При разработке нефтяных и газовых месторождений встречаются различные виды фильтрационных потоков: движение нефти или газа, или совместное движение двух, трехфазного потока одновременно. Поэтому для характеристики проницаемости пород нефтесодержащих пластов введены понятия абсолютной, фазовой и относительной проницаемостей.
Проницаемость абсолютная (физическая) характеризует проницаемость пористой среды для газа или однородной жидкости при выполнении следующих условиях:
— отсутствие физико-химического взаимодействия между пористой средой и этим газом или жидкостью, фаза химически инертна по отношению к породе;
— полное заполнение всех пор среды этим газом или жидкостью.
Абсолютная проницаемость характеризует фильтрационную способность горной породы для инертного в физико-химическом отношении флюида.
Для продуктивных нефтяных пластов эти условия не выполняются.
Проницаемость фазовая (эффективная) – это проницаемость пористой среды для данного газа или жидкости при одновременном наличии в порах другой фазы (жидкости или газа) или других фаз (газ–нефть, нефть–вода, вода–газ, газ–нефть–вода) независимо от того, находятся они в статическом состоянии (например, капиллярно связанная вода) или принимают участие в совместной фильтрации. Величина её зависит не только от физических свойств пород, но и от степени насыщенности порового пространства жидкостями или газом и от их физико-химических свойств. При фильтрации смесей коэффициент фазовой проницаемости намного меньше коэффициента абсолютной проницаемости и неодинаков для пласта в целом.
Относительная проницаемость определяется отношением величины фазовой проницаемости к величине абсолютной для той же породы.
Относительные проницаемости (k ‘ , % или в долях) породы для нефти и воды (газа аналогично) оцениваются как:
где kН и kВ – фазовые проницаемости для воды и нефти;
k – абсолютная проницаемость породы.
Фазовая (эффективная), относительная проницаемости, насыщенность горных пород определяются экспериментально. Проницаемость горной породы зависит от степени насыщения породы флюидами, соотношения фаз, физико-химических свойств породы и флюидов.
Источник
Добыча нефти и газа
Изучаем тонкости нефтегазового дела ВМЕСТЕ!
Виды проницаемости
Проницаемость абсолютная (физическая) – проницаемость пористой среды для газа или однородной жидкости при следующих условиях:
1. Отсутствие физико-химического взаимодействия между пористой средой и этим газом или жидкостью.
2. Полное заполнение всех пор среды этим газом или жидкостью.
Для продуктивных нефтяных пластов эти условия не выполняются.
Проницаемость фазовая (эффективная) – проницаемость пористой среды для данного газа или жидкости при одновременном наличии в порах другой фазы или системы (газ-нефть, газ—нефть-вода).
При фильтрации смесей коэффициент фазовой проницаемости намного меньше абсолютной проницаемости и неодинаков для пласта в целом.
Относительная проницаемость – отношение фазовой проницаемости к абсолютной.
Проницаемость горной породы зависит от степени насыщения породы флюидами, соотношения фаз, физико-химических свойств породы и флюидов.
Фазовая и относительная проницаемости для различных фаз зависят от нефте-, газо- и водонасыщенности порового пространства породы, градиента давления, физико-химических свойств жидкостей и пористых фаз.
Насыщенность – ещё один важный параметр продуктивных пластов, тесно связанный с фазовой проницаемостью.
Предполагается, что продуктивные пласты сначала были насыщены водой. Водой были заполнены капилляры, трещины, каналы.
При миграции углеводороды, вследствие меньшей плотности, стремятся к верхней части пласта, выдавливая вниз воду. Вода легче всего уходит из трещин и каналов, из капилляров вода не уходит в силу капиллярных явлений. Таким образом, в пласте остаётся связанная вода.
Чтобы определить количество углеводородов, содержащихся в продуктивном пласте, необходимо определить насыщенность порового пространства породы нефтью, водой и газом.
Водонасыщенность SВ – отношение объёма открытых пор, заполненных водой к общему объёму пор горной породы. Аналогично определение нефте- и газонасыщенности:
. (1.37)
Обычно для нефтяных месторождений SВ = 6-35%; SН = 65-94%, в зависимости от созревания пласта.
Для нефтяных месторождений справедливо следующее соотношение:
Для газонефтяных месторождений:
SВ + SН + SГ = 1. (1.39)
Пласт считается созревшим для разработки, если остаточная водонасыщенность SВ
Остаточная водонасыщенность, обусловленная капиллярными силами, не влияет на основную фильтрацию нефти и газа.
При водонасыщенности до 25% нефте- и газонасыщенность пород максимальная: 45-77%, а относительная фазовая проницаемость для воды равна нулю.
При увеличении водонасыщенности до 40%, фазовая проницаемость для нефти и газа уменьшается в 2-2,5 раза. При увеличении водонасыщенности до 80% фильтрация газа и нефти в пласте стремится к нулю.
Экспериментально изучался поток при одновременном содержании в пористой среде нефти, воды и газа. Опытами установлено, что в зависимости от объёмного насыщения порового пространства различными компонентами возможно одно-, двух- и трёхфазное движение. Результаты исследования представлены в виде треугольной диаграммы (рис. 1.11).
Рис. 1.11. Области распространения одно-, двух- и трёхфазного потоков:
1. – 5% воды; 2. – 5% нефти; 3. – 5% газа.
Вершины треугольника соответствуют стопроцентному насыщению породы одной из фаз; стороны, противолежащие вершинам, – нулевому насыщению породы этой фазой. Кривые, проведённые на диаграмме, ограничивают возможные области одно-, двух-, и трёхфазного потока.
Источник
14 Проницаемость коллекторов её виды и способы определения
Проницаемость — это свойство породы пропускать жидкость или газ при перепаде давления. Проницаемость зависит от размеров и формы поровых каналов. Единицей измерения проницаемости является Дарси.
Проницаемость образца керна, насыщенного одним флюидом (водой или нефтью), инертным по отношению к породе, зависит целиком и полностью от свойств породы, а не от насыщающего флюида. Как правило, абсолютной проницаемостью называют проницаемость керна по гептану.
Газопроницаемость (Проницаемость по воздуху, гелию, азоту и т.д)
проницаемость образца керна при пропускании через него газа, зависит от давления. При высоких давлениях газопроницаемость приближается к значению абсолютной проницаемости, при низких — иногда значительно (на 50% и более) превышает её, что происходит из-за эффекта Клинкенберга — проскальзывания газа при низких давлениях.
Эффективная (фазовая) проницаемость
Проницаемость породы для отдельно взятого флюида (Ko, Kw), при числе присутствующих в породе фаз, большим единицы. Эффективная проницаемость зависит от флюидонасыщения (степени насыщенности флюидов и их физико-химических свойств).
Как правило под эффективной газопроницаемостью понимают газопроницаемость породы при остаточной флюидонасыщенности (водонасыщенности). Определяется на образцах с остаточной водонасыщенностью также как и обычная газопроницаемость, с одним условием- при определении должны поддерживаться такие перепады давления, при которых не происходит вытеснения остаточного флюида.
Источники данных о проницаемости
гидродинамические исследования, данные эксплуатации,
лабораторные исследования на образцах пористой среды (керна), в условиях максимально приближённых к пластовым,
использование данных о схожем пласте,
математические модели (эмпирические зависимости),
корреляционные зависимости по данным ГИС.
Лабораторные методы определения проницаемости
Проницаемость породы определяется при фильтрации флюидов через керн. Для оценки пользуются линейным законом фильтрации Дарси, по которому скорость фильтрации флюида впористой среде пропорциональна градиенту давления и обратно пропорциональна вязкости: V = Q / F = K × ΔP / μ × L K = Q × μ × L / ΔP × F, где
V — скорость линейной фильтрации (см/с),
Q — объёмный расход флюида (см 3 /с),
μ — вязкость флюида (сП),
ΔP — перепад давления (атм),
F — площадь фильтрации (см 2 ),
L — длина образца (см),
K — проницаемость (Д).
К гидрофобным следует относить породы, содержащие менее 10 % остаточной воды (Кв ≤ 0,1)
При значении коэффициента водонасыщенности более 0,1 породы считают гидрофильными.
В гидрофильном коллекторе вся нефть находится в подвижном состоянии и при ее вытеснении как бы скользит по пленке воды.
В гидрофобном коллекторе часть нефти, образуя пленку на стенках пустот, не участвует в процессе движения, вследствие чего увеличиваются потери нефти в пласте.
Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.
Источник
Добыча нефти и газа
Изучаем тонкости нефтегазового дела ВМЕСТЕ!
Проницаемость
Проницаемость – это фильтрующий параметр горной породы, характеризующий её способность пропускать через себя жидкости и газы при перепаде давления.
Абсолютно непроницаемых тел в природе нет. При сверхвысоких давлениях все горные породы проницаемы. Однако при сравнительно небольших перепадах давления в нефтяных пластах многие породы в результате незначительных размеров пор оказываются практически непроницаемыми для жидкостей и газов (глины, сланцы и т.д.).
Хорошо проницаемыми породами являются: песок, песчаники, доломиты, доломитизированные известняки, алевролиты, а так же глины, имеющие массивную пакетную упаковку (рис. 1.4).
Рис. 1.4. Пример массивной пакетной упаковки глин – фильтрация происходит через каналы между пакетами
Рис. 1.5. Пример упорядоченной пакетной упаковки глин – фильтрация практически не происходит
К плохо проницаемым относятся: глины, с упорядоченной пакетной упаковкой, глинистые сланцы, мергели, песчаники, с обильной глинистой цементацией (рис. 1.5).
1.3.1. Линейная фильтрация нефти и газа в пористой среде
Для оценки проницаемости горных пород обычно пользуются линейным законом фильтрации Дарси. Дарси в 1856 году, изучая течение воды через песчаный фильтр (рис. 1.6), установил зависимость скорости фильтрации жидкости от градиента давления..
Рис. 1.6. Схема экспериментальной установки Дарси для изучения течения воды через песок
Согласно уравнению Дарси, скорость фильтрации воды в пористой среде пропорциональна градиенту давления:
, (1.7)
где Q – объёмная скорость воды;
v – линейная скорость воды;
F – площадь сечения, F = pd2/4;
L – длина фильтра;
k – коэффициент пропорциональности .
Нефть – неидеальная система (компоненты нефти взаимодействуют между собой), поэтому линейный закон фильтрации для нефти, содержит вязкость, учитывающую взаимодействие компонентов внутри нефтяной системы:
, (1.8)
где m – вязкость нефти.
В этом уравнении способность породы пропускать жидкости и газы характеризуется коэффициентом пропорциональности k (1.7), который называется коэффициентом проницаемости (kпр).
Размерность коэффициента проницаемости (система СИ) вытекает из соотношения:
, (1.9)
Размерность параметров уравнения Дарси в разных системах единиц
Объемный дебит, Q
Площадь поперечного сечения фильтра, F
Длина фильтра, L
Перепад давления, ∆P
Вязкость жидкости, µ
В системе СИ коэффициент проницаемости измеряется в м2; в системе СГС [kпр] = см2; в системе НПГ (нефтепромысловой геологии) [kпр] = Д (Дарси).
1 Дарси = 1,02×10-8 см2 = 1,02 · 10-12 м2 » 1 мкм2.
Проницаемостью в 1 м2 называется проницаемость пористой среды при фильтрации через образец площадью 1 м2 длиной 1 м и при перепаде давления 1 Па, при которой расход жидкости вязкостью 1 Па×с составляет 1 м3.
Пористая среда имеет проницаемость 1 Дарси, если при однофазной фильтрации жидкости вязкостью 1 спз (спуаз) при ламинарном режиме фильтрации через сечение образца площадью 1 см2 и перепаде давления 1 атм., расход жидкости на 1 см длины породы составляет 1 см3/сек.
Физический смысл размерности проницаемости – это площадь сечения каналов пористой среды, через которые идет фильтрация.
Существует несколько типов каналов:
Приведённые выше уравнения справедливы при условии движения несжимаемой жидкости по линейному закону Дарси.
В случае фильтрации газа это условие не выполняется. При перепаде давления объём газа изменяется, и оценивается по закону Бойля-Мариотта:
При Т = const, P·V = const (1.10)
При линейной фильтрации газа оценивается средняя скорость фильтрации (Vср):
Vcр· Pср = Vо ·Pо = V1· P1 = V2 · P2, (1.11)
Pср = (P1 + P2) / 2, (1.12)
Vcр = Vо·Pо / Pср = 2·Vо·Pо / (P1 + P2). (1.13)
Тогда, средний объёмный расход газа будет равен:
. (1.14)
Отсюда уравнение коэффициента проницаемости для газа:
. (1.15)
1.3.2. Радиальная фильтрация нефти и газа в пористой среде
Процесс притока пластовых флюидов из пласта в скважину описывается моделью радиальной фильтрации. В этом случае образец породы представляется в виде цилиндрического кольца с проводящими каналами в осевом направлении (рис. 1.7).
Рис. 1.7. Схема радиального притока жидкости в скважину
Площадь боковой поверхности цилиндра: F=2prh, таким образом уравнение Дарси для радиальной фильтрации будет иметь следующий вид:
. (1.16)
Отсюда, дебит при радиальной фильтрации жидкости:
. (1.17)
Таким образом, коэффициент проницаемости при радиальной фильтрации:
. (1.18)
1.3.3. Оценка проницаемости пласта, состоящего из нескольких пропластков различной проницаемости
Пласт состоит, как правило, из отдельных пропластков, поэтому общая проницаемость пласта (kпр) оценивается с учетом проницаемости пропластков и направления фильтрации.
Рис. 1.8. Линейная фильтрация в пласте, состоящем из нескольких изолированных пропластков различной мощности и проницаемости.
При линейной фильтрации жидкости в пласте, состоящем из нескольких изолированных пропластков различной мощности и проницаемости (рис. 1.8), средняя проницаемость пласта рассчитывается следующим образом:
, (1.19)
где hi – мощность i-го пропластка;
ki – проницаемость i-го пропластка.
Рис. 1.9. Линейная фильтрация через пласт, имеющий несколько последовательно расположенных зон различной проницаемости.
При линейной фильтрации жидкости через пласт, имеющий несколько последовательно расположенных зон различной проницаемости (рис. 1.9), коэффициент проницаемости пласта рассчитывается следующим образом:
, (1.20)
где Li – длина i-го пропластка;
ki – проницаемость i-го пропластка.
Рис. 1.10. Радиальная фильтрация через пласт, имеющий несколько концентрически расположенных зон различной проницаемости.
При радиальной фильтрации жидкости через пласт, имеющий несколько концентрически расположенных зон различной проницаемости (рис. 1.10), средняя проницаемость пласта оценивается следующим образом:
(1.21)
где rk – радиус контура;
rс – радиус скважины;
ri – радиус i-го пропластка;
ki – проницаемость i-го пропластка.
1.3.4. Классификация проницаемых пород
По характеру проницаемости (классификация Теодоровича Г. И.) различают коллектора:
По величине проницаемости (мкм2) для нефти выделяют 5 классов коллекторов:
1. очень хорошо проницаемые (>1);
2. хорошо проницаемые (0,1 – 1);
3. средне проницаемые (0,01 – 0,1);
4. слабопроницаемые (0,001 – 0,01);
Для классификации коллекторов газовых месторождений используют 1–4 классы коллекторов.
Источник