Промышленный способ получения щелочноземельных металлов

Щелочноземельные металлы

К понятию щелочноземельных металлов относится часть элементов II группы системы Менделеева: бериллий, магний, кальций, стронций, барий, радий. Четыре последних металла имеют наиболее ярко выраженные признаки щелочноземельной классификации, поэтому в некоторых источниках бериллий и магний не включают в список, ограничиваясь четырьмя элементами.

Свое название металла получили благодаря тому, что при взаимодействии их оксидов с водой образуется щелочная среда. Физические свойства щелочноземельных металлов: все элементы имеют серый металлический цвет, при нормальных условиях имеют твердую структуру, с ростом порядкового номера увеличивается их плотность, имеют очень высокую температуру плавления. В отличие от щелочных металлов, элементы данной группы не режутся ножом (за исключением стронция). Химические свойства щелочноземельных металлов: имеют два валентных электрона, активность растет с повышением порядкового номера, в реакциях выступают в качестве восстановителя.

Характеристика щелочноземельных металлов свидетельствует об их высокой активности. В особенности это относится к элементам с большим порядковым номером. Например, бериллий в нормальных условиях не ступает во взаимодействие с кислородом и галогенами. Для запуска механизма реагирования его необходимо нагреть до температуры свыше 600 градусов по Цельсию. Магний в нормальных условиях имеет на поверхности оксидную пленку и также не реагирует с кислородом. Кальций окисляется, но достаточно медленно. А вот стронций, барий и радий окисляются практически мгновенно, поэтому их хранят в безкислородной среде под керосиновым слоем.

Все оксиды усиливают основные свойства с ростом порядкового номера металла. Гидроксид бериллия представляет собой амфотерное соединение, которое не реагирует с водой, но хорошо растворяется в кислотах. Гидроксид магния является слабой щелочью, нерастворимой в воде, но реагирующей с сильными кислотами. Гидроксид кальция — сильное, малорастворимое в воде основание, реагирующее с кислотами. Гидроксиды бария и стронция относятся к сильным основаниям, хорошо растворимым в воде. А гидроксид радия — это одна из сильнейших щелочей, которая хорошо реагирует с водой и практически всеми видами кислот.

Способы получения

Получают гидроксиды щелочноземельных металлов путем воздействия воды на чистый элемент. Реакция протекает при комнатных условиях (кроме бериллия, для которого требуется повышение температуры) с выделением водорода. При нагревании все щелочноземельные металлы реагируют с галогенами. Полученные соединения используются в производстве большого ассортимента продукции от химических удобрений до сверхточных деталей микропроцессора. Соединения щелочноземельных металлов проявляют такую же высокую активность, как и чистые элементы, поэтому их используют во многих химических реакциях.

Читайте также:  Проверенный способ вернуть любимого мужчину

Чаще всего это происходит при реакциях обмена, когда необходимо вытеснить из вещества менее активный металл. В окислительно-восстановительных реакциях принимают участие в качестве сильного восстановителя. Двухвалентные катионы кальция и магния придает воде так называемую жесткость. Преодоление этого явления происходит путем осаждения ионов при помощи физического воздействия или добавления в воду специальных смягчающих веществ. Соли щелочноземельных металлов образуются путем растворения элементов в кислоте либо в результате реакций обмена. Полученные соединения имеют прочную ковалентную связь, поэтому обладают невысокой электропроводностью.

В природе щелочноземельные металлы не могут находиться в чистом виде, так как быстро вступают во взаимодействие с окружающей средой, образую химические соединения. Они входят в состав минералов и горных пород, содержащихся в толще земной коры. Наиболее распространен кальций, немного уступает ему магний, довольно часто встречаются барий и стронций. Бериллий относится к редким металлам, а радий — к очень редким. За все время, которое прошло с момента открытия радия, во всем мире было добыто всего полтора килограмма чистого металла. Как и большинство радиоактивных элементов, радий имеет изотопы, коих у него насчитывается четыре штуки.

Получают щелочноземельные металлы путем разложения сложных веществ и выделения из них чистого вещества. Бериллий добывают путем восстановления его из фторида при воздействии высокой температуры. Барий восстанавливает из его оксида. Кальций, магний и стронций получают путем электролиза их хлоридного расплава. Сложнее всего синтезировать чистый радий. Его добывают путем воздействия на урановую руду. По подсчетам ученых в среднем на одну тонну руды приходится 3 грамма чистого радия, хотя встречаются и богатые месторождения, в которых содержится целых 25 грамм на тонну. Для выделения металла используются методы осаждения, дробной кристаллизации и ионного обмена.

Применение щелочноземельных металлов

Спектр применения щелочноземельных металлов очень обширен и охватывает многие отрасли. Бериллий в большинстве случаев используется в качестве легирующей добавки в различные сплавы. Он повышает твердость и прочность материалов, хорошо защищает поверхность от воздействия коррозии. Также благодаря слабому поглощению радиоактивного излучения бериллий используется при изготовлении рентгеновских аппаратов и в ядерной энергетике.

Читайте также:  Самый эффективный способ от насморка для детей

Магний используют как один из восстановителей при получении титана. Его сплавы отличаются высокой прочностью и легкостью, поэтому используются при производстве самолетов, автомобилей, ракет. Оксид магния горит ярким ослепительным пламенем, что нашло отражение в военном деле, где он используется для изготовления зажигательных и трассирующих снарядов, сигнальных ракет и светошумовых гранат. Является одним из важнейших элементов для регуляции нормального процесса жизнедеятельности организма, поэтому входит в состав некоторых лекарств.

Кальций в чистом виде практически не применяют. Он нужен для восстановления других металлов из их соединений, а также в производстве препаратов для укрепления костной ткани. Стронций используют для восстановления других металлов и в качестве основного компонента для производства сверхпроводящих материалов. Барий добавляют во многие сплавы, которые предназначены для работы в агрессивной среде, так как он обладает отличными защитными свойствами. Радий используется в медицине для кратковременного облучения кожи при лечении злокачественных образований.

Источник

II группа главная подгруппа Периодической таблицы Менделеева (щелочноземельные металлы)

К щелочноземельным металлам относят химические элементы: двувалентные металлы, составляющие IIА группу:

Бериллий Be

магний Mg

кальций Ca,

стронций Sr,

барий Ba и

радий Ra.

Хотя бериллий Be по свойствам больше похож на алюминий, а магний Mg проявляет некоторые свойства щелочноземельных металлов, но в целом отличается от них.

Все щелочноземельные металлы — вещества серого цвета и гораздо более твердые, чем щелочные металлы.

Бериллий Be устойчив на воздухе. Магний и кальций (Mg и Ca) устойчивы в сухом воздухе. Стронций Sr и барий Ba хранят под слоем керосина.

Общая характеристка щелочноземельных металлов

От Be к Ra (сверху вниз в периодической таблице) происходит увеличение:

  • атомного радиуса,
  • металлических, основных, восстановительных свойств,
  • реакционной способности.

Уменьшается

  • электроотрицательность,
  • энергия ионизация,
  • сродство к электрону.

Электронные конфигурации у данных элементов схожи, все они содержат 2 электрона на внешнем уровне ns 2 :

Be — 2s 2

Mg —3s 2

Ca — 4s 2

Sr — 5s 2

Ba — 6s 2

Ra — 7s 2

Нахождение в природе щелочноземельных металлов

Как правило, щелочноземельные металлы в природе присутствуют в виде минеральных солей: хлоридов, бромидов, йодидов, карбонатов, нитратов и др.

Основные минералы, в которых присутствуют щелочноземельные металлы:

Способы получения щелочноземельных металлов

Магний

  • Магний получают электролизом солей, чаще всего хлоридов: расплавленного карналлита (KCl·MgCl26H2O) или хлорида магния с добавками хлорида натрия при 720–750°С:
  • восстановлением прокаленного доломита в электропечах при 1200–1300°С:
Читайте также:  Никотиновая кислота способ применения дозы

2(CaO · MgO) + Si → 2Mg + Ca2SiO4

Кальций

Кальций получают электролизом расплавленного хлорида кальция с добавками фторида кальция:

Барий

Барий получают алюмотермическим способом — восстановление оксида бария алюминием в вакууме при 1200 °C:

Химические свойства щелочноземельных металлов

Качественные реакции

  • Окрашивание пламени солями щелочных металлов

Цвет пламени:

Sr — карминово-красный (алый)

  • Взаимодействие с веществами:

Взаимодействие с простыми веществами — неметаллами

С кислородом

С кислородом взаимодействуют при нагревании с образованием оксидов

С галогенами

Щелочноземельные металлы реагируют с галогенами при нагревании с образованием галогенидов .

С водородом

Щелочноземельные металлы реагируют с водородом при нагревании с образованием гидридов:

Бериллий с водородом не взаимодействует.

Магний реагирует только при повышенном давлении:

С серой

Щелочноземельные металлы при нагревании взаимодействуют с серой с образованием сульфидов сульфидов:

Ca + 2C → CaC2 (карбиды)

С азотом

При комнатной температуре с азотом взаимодействует только магний с образованием нитрида:

Остальные щелочноземельные металлы реагируют с азотом при нагревании.

С углеродом

Щелочноземельные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов:

Бериллий при нагревании с углеродом с образует карбид — метанид:

С фосфором

Щелочноземельные металлы при нагревании взаимодействуют с фосфором с образованием фосфидов:

Взаимодействие со сложными веществами

С водой

Кальций, стронций и барий взаимодействуют с водой при комнатной температуре с образованием щелочи и водорода:

Магний реагирует с водой при кипячении, а бериллий с водой не реагирует.

С кислотами

  • С растворами HCl, H2SO4,H3PO4щелочноземельные металлы взаимодействуют с образованием соли и выделением водорода:
    Са + H2SO4(разб)= СаSO4 + H2
  • С кислотами-окислителями (HNO3 и конц. H2SO4):

с концентрированной серной:

с разбавленной и концентрированной азотной:

С водными растворами щелочей

В водных растворах щелочей растворяется только бериллий:

С солями

В расплаве щелочноземельные металлы могут взаимодействовать с некоторыми солями:

Запомните! В растворе щелочноземельные металлы взаимодействуют с водой, а не с солями других металлов.

С оксидами

Щелочноземельные металлы могут восстанавливать из оксидов такие неметаллы как кремний, бор, углерод:

2Ca + SiO2 → 2CaO + Si

Магний сгорает в атмосфере углекислого газа с образованием оксида магния и сажи (С):

Источник

Оцените статью
Разные способы