Промышленный способ получения этиленгликоля

Содержание
  1. Этиленгликоль: химические свойства и получение
  2. Строение этиленгликоля
  3. Водородные связи и физические свойства спиртов
  4. Химические свойства этиленгликоля
  5. 1.1. Взаимодействие с раствором щелочей
  6. 1.2. Взаимодействие с металлами (щелочными и щелочноземельными)
  7. 2. Реакции замещения группы ОН
  8. 2.1. Взаимодействие с галогеноводородами
  9. 2.2. Этерификация (образование сложных эфиров)
  10. 2.4. Взаимодействие с кислотами-гидроксидами
  11. 3. Дегидратация
  12. 4. Окисление этиленгликоля
  13. 4.1. Окисление оксидом меди (II)
  14. 4.2. Окисление кислородом в присутствии катализатора
  15. 4.3. Жесткое окисление
  16. 4.4. Горение этиленгликоля
  17. 5. Дегидрирование этаниленгликоля
  18. Получение этиленгликоля
  19. 1. Щелочной гидролиз дигалогеналканов
  20. 2. Гидрирование карбонильных соединений
  21. 3. Гидролиз сложных эфиров
  22. 4. Мягкое окисление алкенов
  23. Промышленный способ получения этиленгликоля
  24. Свойства продукта и технические характеристики
  25. Промышленные методы производства этиленгликоля
  26. Области применения этиленгликоля

Этиленгликоль: химические свойства и получение

Этиленгликоль C2H4(OH)2 или CH2(OH)CH2OH, этандиол-1,2 – это органическое вещество, предельный двухатомный спирт .

Общая формула предельных нециклических двухатомных спиртов: CnH2n+2O2 или CnH2n(OН)2

Строение этиленгликоля

В молекулах спиртов, помимо связей С–С и С–Н, присутствуют ковалентные полярные химические связи О–Н и С–О.

Электроотрицательность кислорода (ЭО = 3,5) больше электроотрицательности водорода (ЭО = 2,1) и углерода (ЭО = 2,4).

Электронная плотность обеих связей смещена к более электроотрицательному атому кислорода:

Атом кислорода в спиртах находится в состоянии sp 3 -гибридизации.

В образовании химических связей с атомами C и H участвуют две 2sp 3 -гибридные орбитали, а еще две 2sp 3 -гибридные орбитали заняты неподеленными электронными парами атома кислорода.

Поэтому валентный угол C–О–H близок к тетраэдрическому и составляет почти 108 о .

Водородные связи и физические свойства спиртов

Спирты образуют межмолекулярные водородные связи. Водородные связи вызывают притяжение и ассоциацию молекул спиртов:

Поэтому этиленгликоль – жидкость с относительно высокой температурой кипения.

Водородные связи образуются не только между молекулами спиртов, но и между молекулами спиртов и воды. Поэтому спирты очень хорошо растворимы в воде. Молекулы спиртов в воде гидратируются:

Чем больше углеводородный радикал, тем меньше растворимость спирта в воде. Чем больше ОН-групп в спирте, тем больше растворимость в воде.

Химические свойства этиленгликоля

Спирты – органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

1. Кислотные свойства

Спирты – неэлектролиты, в водном растворе не диссоциируют на ионы; кислотные свойства у них выражены слабее, чем у воды.

1.1. Взаимодействие с раствором щелочей

При взаимодействии этиленгликоля с растворами щелочей реакция практически не идет, т. к. образующийся алкоголят почти полностью гидролизуется водой.

Равновесие в этой реакции так сильно сдвинуто влево, что прямая реакция не идет. Поэтому этиленгликоль не взаимодействует с растворами щелочей.

1.2. Взаимодействие с металлами (щелочными и щелочноземельными)

Этиленгликоль взаимодействует с активными металлами (щелочными и щелочноземельными).

Например, этиленгликоль взаимодействует с калием с образованием гликолята калия и водорода .

Алкоголяты под действием воды полностью гидролизуются с выделением спирта и гидроксида металла.

2. Реакции замещения группы ОН

2.1. Взаимодействие с галогеноводородами

При взаимодействии этиленгликоля с галогеноводородами группы ОН замещаются на галоген и образуются дигалогеналкан.

Например, этиленгликоль реагирует с бромоводородом.

2.2. Этерификация (образование сложных эфиров)

Многоатомные спирты вступают в реакции с карбоновыми кислотами, образуя сложные эфиры.

Например, этиленгликоль реагирует с уксусной кислотой с образованием эфира:
Читайте также:  Способы отправления поезда при запрещающем выходном светофоре

2.4. Взаимодействие с кислотами-гидроксидами

Этиленгликоль взаимодействует и с неорганическими кислотами, например, азотной или серной.

Например, при взаимодействии этиленгликоля с азотной кислотой образуется нитроэтиленгликоль :

3. Дегидратация

В присутствии концентрированной серной кислоты от спиртов отщепляется вода. При высокой температуре (180 о С) протекает внутримолекулярная дегидратация этиленгликоля и образуется соответствующий ацетальдегид.

4. Окисление этиленгликоля

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

Типичные окислители — оксид меди (II), перманганат калия KMnO4, K2Cr2O7, кислород в присутствии катализатора.

4.1. Окисление оксидом меди (II)

Этиленгликоль можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества.

4.2. Окисление кислородом в присутствии катализатора

Этиленгликоль можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.).

4.3. Жесткое окисление

При жестком окислении под действием перманганатов или соединений хрома (VI) этиленгликоль окисляется до щавелевой кислоты.

Например, при взаимодействии этиленгликоля с перманганатом калия в серной кислоте образуется щавелевая кислота

4.4. Горение этиленгликоля

При сгорании этиленгликоля образуется углекислый газ и вода и выделяется большое количество теплоты.

5. Дегидрирование этаниленгликоля

При нагревании спиртов в присутствии медного катализатора протекает реакция дегидрирования.

Например, при дегидрировании этиленгликоля образуется этандиаль

Получение этиленгликоля

1. Щелочной гидролиз дигалогеналканов

При взаимодействии дигалогеналканов с водным раствором щелочей образуются двухатомные спирты. Атомы галогенов в дигалогеналканах замещаются на гидроксогруппы.

Например, при нагревании 1,2-дихлорэтана с водным раствором гидроксида натрия образуется этиленгликоль

2. Гидрирование карбонильных соединений

Например, при гидрировании этандиаля образуется этиленгликоль

О=CН-CH=O + 2H2 CH2(OH)-CH2OH

3. Гидролиз сложных эфиров

При гидролизе сложных эфиров этиленгликоля и карбоновых кислот образуются этиленгликоль и карбоновая кислота.

4. Мягкое окисление алкенов

Мягкое окисление протекает при низкой температуре в присутствии перманганата калия. При этом раствор перманганата обесцвечивается.

В молекуле алкена разрывается только π-связь и окисляется каждый атом углерода при двойной связи.

При этом образуются двухатомные спирты (диолы).

Источник

Промышленный способ получения этиленгликоля

В промышленности этиленгликоль получают гидратацией окиси этилена. Свойство вступать в реакцию поликонденсации обеспечивает ему стабильно растущий спрос в секторе производства полиэфиров, а уникальная возможность не замерзать при пониженных температурах делает его незаменимым в производстве антифризов.

Свойства продукта и технические характеристики

Этиленгликоль представляет собой бесцветную вязкую гигроскопичную жидкость без запаха, сладковатого вкуса. Температура кипения 197,6 °С, температура плавления –12,7 °С, плотность – 1,1132 г/см 3 . Хорошо растворим в воде, спиртах, кетонах и др., умеренно — в бензоле, толуоле, диэтиловом эфире. Водные растворы этиленгликоля замерзают при низких температурах (до -70 °С).

Этиленгликоль ядовит. При попадании внутрь действует на центральную нервную систему и почки, смертельная доза — 1,4 г/кг. Предельно допустимая концентрация в воздухе рабочей зоны — 5 мг/м 3 . Относится к третьему классу опасности. Из-за низкой упругости паров этиленгликоль не вызывает острых отравлений при вдыхании.

При транспортировке этиленгликоль должен быть расфасован только в алюминиевые бочки или бочки из коррозионно-стойкой стали. Этиленгликоль, упакованный в бочки, транспортируют в крытых транспортных средствах всеми видами транспорта, а также в железнодорожных цистернах. Хранят в бочках в закрытых не отапливаемых складах.

Читайте также:  Развитие новых способов передачи информации

В нижеследующей таблице кратко представлены технические требования к моноэтиленгликолю высшего и первого сорта согласно ГОСТ 19710-83 .

Технические характеристики этиленгликоля (согласно ГОСТ 19710-83 )

Показатель

Значение

Высший Сорт

Сорт 1

Массовая доля этиленгликоля. %. не менее

Массовая доля диэтиленгликоля. %. не более

Цвет в единицах Хазена, не более:
в обычном состоянии

после кипячения с соляной кислотой

Массовая доля остатка после прокаливания, %, не более

Массовая доля железа. %. не более

Массовая доля воды, %, не более

Массовая доля кислот в пересчете на уксусную, %, не более

Показатель преломления при 20° С

Пропускание в ультрафиолетовой области спектра,%, не менее, при длинах волн, нм:

Этиленгликоль был впервые получен в 1859 году французским химиком Шарлем Адольфом Вудсом. Первое промышленное производство этиленгликоля основывалось на гидролизе дихлорэтана водным раствором соды при 200 °С и давлении 10 МПа. Он использовался в небольших масштабах в период Первой мировой войны в качестве теплоносителя и компонента взрывчатых веществ. Широкое промышленное производство началось в 1937 году, когда был разработан процесс прямого окисления этилена в этиленоксид, что обеспечило доступным сырьем производство этиленгликоля. В настоящее время мировое производство этиленгликоля основано на гидратации окиси этилена.

В период Второй мировой войны этиленгликоль получил широкое распространение в авиации, где он стал использоваться в качестве охладителя радиатора и антиобледенителя стекол. В последующие годы сферы использования этиленгликоля расширялись, появлялись новые продукты на его основе. На сегодняшний день производство этиленгликоля является важной составляющей химической промышленности. Потребность в этом продукте в мире с каждым годом увеличивается.

Промышленные методы производства этиленгликоля

В настоящее время основным промышленным способом получения этиленгликоля является гидратации окиси этилена. Реакция включает раскрытие эпоксидного цикла и образование гидроксильных групп. Она проходит в воде при небольшом нагревании и несколько повышенном давлении в присутствии кислотного катализатора.

Процесс проводят в нейтральной среде под давлением 10≈12 кгс/см2 при 160≈180 °С в непрерывно действующем автоклаве, который представляет собой стальную колонну высотой 10 м и диаметром 1 м. Раствор, выходящий из автоклава, упаривают в двух- или трехкорпусном выпарном агрегате и фракционируют. В процессе производства моноэтиленгликоля получаются также ди- и триэтиленгликоли.

С установки выходит достаточно чистый этиленгликоль, который удовлетворяет жестким требованиям, предъявляемым производителями полиэтилентерефталата и полиэфирных волокон. Ниже представлена схема установки по получению этиленгликоля и ориентировочный материальный баланс процесса.

Материальный баланс процесса синтеза этиленгликоля

Сырье

Масса, кг

Продукты

Масса, кг

* Ди-, три- и тетраэтиленгликоли

Этиленгликоль также может быть получен взаимодействием этиленоксида с СО2 при температуре 80-120°С и давлении 2-5 МПа в присутствии галогенидов щелочных металлов, аммония или аминов с последующей гидратацией образующегося этиленкарбоната.

Этиленгликоль образуется также при ацетоксилировании этилена с последующим гидролизом моно- и диацетатов этиленгликоля (катализаторами служат хлориды Pd, Li, нитраты Fe, Ni). Недостаток метода — высокая коррозионность среды, трудность отделения солей и продуктов реакции, необходимость регенерации катализатора.

При уменьшении добычи нефти и резком увеличении стоимости этилена представляют интерес методы синтеза этиленгликоля из альтернативного сырья: синтез-газа, метанола, СО и воды при т-ре 200°С и давлении 70 МПа либо в жидкой фазе при 40 МПа в присутствии оксидных медно-магниевых или родиевых катализаторов; из СО и Н2 — через диэфиры щавелевой кислоты.

Читайте также:  Способы разработки компьютерных моделей

Так, компания IPCI ( International Polyol Chemicals Inc., США), работающая в области создания новых, «зеленых» химических технологий, разработала новый способ производства многоатомных спиртов (этиленгликоля, пропиленгликоля, бутандиолов и глицерина) из сахаров любого происхождения. По этой технологии с 2004 года уже работает завод в Changchun (Китай) мощностью 10 тыс. тонн в год.

Области применения этиленгликоля

Этиленгликоль применяют в химической, текстильной, автомобильной, авиационной, электротехнической промышленности, в производстве гидравлических и закалочных жидкостей, полиуретанов, алкидных смол и др.

Два основных пути использования этиленгликоля абсолютно различны. С одной стороны, он применяется как потребительский продукт, а с другой – как сырье для более сложных химических процессов. Вследствие низкой температуры замерзания этиленгликоль является основным ингредиентом автомобильного антифриза. В зависимости от концентрации этиленгликоля в водном растворе можно получить основу охлаждающей жидкости с температурой замерзания от 0°С до 70°С. Водные растворы этиленгликоля не расширяются при замерзании и не образуют сплошной твердой массы, а превращаются в кашицеобразную рыхлую массу, объем которой больше первоначального только на 0,25-0,30%.

Из-за высокой химической активности он используется как мономер в производстве полиэфиров и полиэтилентерефталата, пластмассы для изготовления широко распространенных пластиковых бутылок для воды и напитков. Широкое распространение получили синтетические полиэфирные волокна на основе ПЭТФ.

На указанные области применения – в качестве антифриза, в производстве ПЭТФ и полиэфиров — приходится до 98% общего количества этиленгликоля, производимого в мире. Кроме того, этиленгликоль иногда используется в авиации в качестве антиобледенителя для ветровых стекол. Две гидроксильных группы в молекуле этиленгликоля делают его пригодным также для производства поверхностно-активных веществ и латексных красок. Смесь моноацетата и диацетата этиленгликоля представляет собой отвердитель, используемый в литейном производстве при изготовлении самоотверждающихся формовочных и стержневых смесей с жидким стеклом.

Низкомолекулярные и высокомолекулярные полиэфиры (ПЭГ) используются в качестве мягких лекарственных форм; гидрофильной основа для кремов, зубных паст, компонент лосьонов, дезодорантов, шампуней; эмульгаторов, диспергаторов, антистатиков в текстильной и кожевенной промышленности; пластификаторов в целлюлозно-бумажной промышленности; компонентов смазочно-охлаждающих жидкостей; в производстве полиуретанов; растворителей и добавок в лаках и красках; в производстве вискозы.

На основе насыщенных сложных эфиров, получаемых взаимодействием этиленгликоля с себационовой, ортофталевой кислотами, изготавливают полиэфирные клеи. Этиловый эфир этиленгликоля (этилцеллозольв) используется в качестве растворителя (нитро- и ацетилцеллюлозы, смол, лаков и др.), некоррозивных антифризов, антикристаллизационных присадок к моторным топливам и т.д. Гигроскопичность обуславливает применение этиленгликоля в качестве увлажнителя для текстильных волокон, бумаги, кожи и клеев.

Этиленгликоль также используют для ускорения сушки и улучшения эластичности покрытий алкидных красок на масляной основе, в качестве осушающего агента природного газа и моторных масел, для получения чернил, пестицидов, морилок, протрав и многих других продуктов.

C текущей ситуацией и прогнозом развития российского рынка моноэтиленгликоля можно познакомиться в отчете Академии Конъюнктуры Промышленных Рынков « Рынок моноэтиленгликоля в России ».

Источник

Оцените статью
Разные способы