Промышленный способ получения бутена

Бутены

Бутилен, который также называют бутеном, является непредельным углеводородом. Это достаточно опасное вещество, которое имеет 4 класс опасности. По своим физическим свойствам, бутен и его производные изомеры (бутен 1, бутен 2, изобутен и др.) представляет собой бесцветный газ с ярко выраженным запахом, температура кипения которого составляет -6.6 о С. Плотность газа при нормальных атмосферных условиях составляет 2.5 кг/м 3 . Газ в сочетании с кислородом дает взрывоопасную смесь. Бутен обладает рядом химических свойств, которые обусловили его использование в производстве полиэтилена — сделаем подробный обзор химических особенностей данного вещества.

Общие сведения о бутене

Бутен обладает свойствами, которые характерны для всех олефинов. Химическая формула бутена — С4Н8, также существуют множественные изомеры (в том числе альфа-бутилен, псевдобутилен или бета-бутилен, транс- и цис-изомеры бутена). Сам углеводород — это сополимер множества алкеновых углеводородов и их производных (пропен, пентен, гексен и т.д.).

Вещество очень плохо растворяется в воде, хорошо взаимодействует с органическими растворителями (эфиры и спирты). При присоединении молекул Н2 образуются галогеноводороды, при действии кислотных катализаторов с бутиленом образуются ароматические углеводороды и парафиновые производные, при окислительных реакциях с кислородом (при наличии катализаторов) бутен способен превращаться в эпоксиды, при щелочном воздействии получаются гликоли, а при взаимодействии с отдельными катализаторами можно получать изопропен, бутилкаучук и другие соединения.

Технология производства бутена

На сегодняшний день существует несколько способов промышленного получения бутена и (или) его производных:

  • Олигомеризация этилена в присутствии катализатора — алюминия-3-этил;
  • Димеризация при низких температурах этилена при наличии каталитических систем металлическо-органического типа на основе таких элементов, как цирконий, титан или никель;
  • Получение вещества из углеводородных фракций на нефтехимических производствах;
  • Проведение каталитического крекинга или пиролиза нефтяных газов или нефтепродуктов в жидком состоянии;
  • Дегидрирование бутана и его производных изомеров при наличии алюмохромового катализатора.
Читайте также:  Способы определения твердости металлов по роквеллу

Нельзя сказать наиболее распространенную процедуру получения бутена — все зависит от географии разработок и производства, а также от наличия возможностей работы с газом. В отечественных странах распространено получение бутилена с бутено-изобутеновых фракций, которые являются отработкой при производстве этилена и пропилена.

Использование бутена

Бутены широко используются для производства огромного количества веществ и материалов. Так, вещество применяют для производства бутадиена, полиизобутилена, каучука, антиоксидантов, алкиатов, полибутена, жидкого топлива, изопрена, полиэтилена. Наиболее распространена практика использования бутена для производства полиэтилена.

Полиэтилен высокой плотности является полиэтиленом, характерной особенностью которого является макромолекула со значительно разветвленной структурой и низкая плотность вещества. Изготовление проводится при очень высоком давлении. Чтобы изготовить такой полиэтилен, используется бутен 1, а также другие сополимеры этилена, благодаря которому достигаются необходимые химико-физические свойства конечного продукта. Для изготовления ЛПЭНП используются вещества, способные выстраивать линейную молекулу — этого возможно достичь за счет использования сополимеров, в отличие от гомополимеров при производстве ПЭВП.

Использование бутилена при изготовлении ЛПЭНП обуславливает его использование при производстве экструзивных продуктов (пленок, труб, кабельных изоляций, мембран и сеток), литьевых продуктов (в том числе товаров народного потребления, мебельной фурнитуры, ящиков, автомобильных комплектующих), а также ротоформированных продуктов (детских площадок, передвижных биотуалетов, эстакад, колодцев, различных емкостей наподобие мусорных баков и ведер, дорожных ограждений).

Источник

Способы получения алкенов

Алкены – это непредельные (ненасыщенные) нециклические углеводороды, в молекулах которых присутствует одна двойная связь между атомами углерода С=С.

Наличие двойной связи между атомами углерода очень сильно меняет свойства углеводородов.

Получение алкенов

Рассмотрим промышленные и лабораторные способы получения алкенов.

1. Дегидрирование алканов

При дегидрировании алканов, содержащих от 2 до 4 атомов углерода в молекуле, образуются двойные и тройные связи.

Например, при дегидрировании этана может образоваться этилен или ацетилен:

При дегидрировании бутана под действием металлических катализаторов образуется смесь продуктов. Преимущественно образуется бутен-2:

Если бутан нагревать в присутствии оксида хрома (III), преимущественно образуется бутадиен-1,3:

2. Крекинг алканов

Крекинг – это реакция разложения алкана с длинной углеродной цепью на алканы и алкены с более короткой углеродной цепью.

Крекинг бывает термический и каталитический.

Читайте также:  Способ измерения ввп по добавленной стоимости производственный метод с приведенным примером

Термический крекинг протекает при сильном нагревании без доступа воздуха.

При этом получается смесь алканов и алкенов с различной длиной углеродной цепи и различной молекулярной массой.

Например, при крекинге н-пентана образуется смесь, в состав которой входят этилен, пропан, метан, бутилен, пропилен, этан и другие углеводороды.

Каталитический крекинг проводят при более низкой температуре в присутствии катализаторов. Процесс сопровождается реакциями изомеризации и дегидрирования. Катализаторы каталитического крекинга – цеолиты (алюмосиликаты кальция, натрия).

3. Дегидрогалогенирование галогеналканов

Галогеналканы взаимодействуют с щелочами в спиртовом растворе. При этом происходит дегидрогалогенирование – отщепление (элиминирование) атомов водорода и галогена от галогеналкана.

Например, при взаимодействии хлорэтана с спиртовым раствором гидроксида натрия образуется этилен.

При отщеплении галогена и водорода от некоторых галогеналканов могут образоваться различные органические продукты. В таком случае выполняется правило Зайцева.

Правило Зайцева: отщепление атома водорода при дегидрогалогенировании и дегидратации происходит преимущественно от наименее гидрогенизированного атома углерода.
Например, при взаимодействии 2-хлорбутана со спиртовым раствором гидроксида натрия преимущественно образуется бутен-2. Бутен-1 образуется в небольшом количестве (примерно 20%). В реакции мы указываем основной продукт.

4. Дегидратация спиртов

При нагревании спиртов (выше 140 о С) в присутствии водоотнимающих веществ (концентрированная серная кислота, фосфорная кислота) или катализаторов (оксид алюминия) протекает дегидратация. Дегидратация — это отщепление молекул воды.

При дегидратации спиртов образуются алкены.

Например, при дегидратации этанола при высокой температуре образуется этилен.

Дегидратация более сложных молекул также протекает по правилу Зайцева.

Например, при дегидратации бутанола-2 преимущественно образуется бутен-2.

5. Дегалогенирование дигалогеналканов

Дигалогеналканы, в молекулах которых два атома галогена расположены у соседних атомов углерода, реагируют с активными металлами с образованием алкенов.

Как правило, для отщепления используют двухвалентные активные металлы — цинк или магний.

Источник

Способы получения алкенов

Алкены – это непредельные (ненасыщенные) нециклические углеводороды, в молекулах которых присутствует одна двойная связь между атомами углерода С=С.

Наличие двойной связи между атомами углерода очень сильно меняет свойства углеводородов.

Получение алкенов

Рассмотрим промышленные и лабораторные способы получения алкенов.

1. Дегидрирование алканов

При дегидрировании алканов, содержащих от 2 до 4 атомов углерода в молекуле, образуются двойные и тройные связи.

Читайте также:  Общественное бытие общественное сознание способ производства
Например, при дегидрировании этана может образоваться этилен или ацетилен:

При дегидрировании бутана под действием металлических катализаторов образуется смесь продуктов. Преимущественно образуется бутен-2:

Если бутан нагревать в присутствии оксида хрома (III), преимущественно образуется бутадиен-1,3:

2. Крекинг алканов

Крекинг – это реакция разложения алкана с длинной углеродной цепью на алканы и алкены с более короткой углеродной цепью.

Крекинг бывает термический и каталитический.

Термический крекинг протекает при сильном нагревании без доступа воздуха.

При этом получается смесь алканов и алкенов с различной длиной углеродной цепи и различной молекулярной массой.

Например, при крекинге н-пентана образуется смесь, в состав которой входят этилен, пропан, метан, бутилен, пропилен, этан и другие углеводороды.

Каталитический крекинг проводят при более низкой температуре в присутствии катализаторов. Процесс сопровождается реакциями изомеризации и дегидрирования. Катализаторы каталитического крекинга – цеолиты (алюмосиликаты кальция, натрия).

3. Дегидрогалогенирование галогеналканов

Галогеналканы взаимодействуют с щелочами в спиртовом растворе. При этом происходит дегидрогалогенирование – отщепление (элиминирование) атомов водорода и галогена от галогеналкана.

Например, при взаимодействии хлорэтана с спиртовым раствором гидроксида натрия образуется этилен.

При отщеплении галогена и водорода от некоторых галогеналканов могут образоваться различные органические продукты. В таком случае выполняется правило Зайцева.

Правило Зайцева: отщепление атома водорода при дегидрогалогенировании и дегидратации происходит преимущественно от наименее гидрогенизированного атома углерода.
Например, при взаимодействии 2-хлорбутана со спиртовым раствором гидроксида натрия преимущественно образуется бутен-2. Бутен-1 образуется в небольшом количестве (примерно 20%). В реакции мы указываем основной продукт.

4. Дегидратация спиртов

При нагревании спиртов (выше 140 о С) в присутствии водоотнимающих веществ (концентрированная серная кислота, фосфорная кислота) или катализаторов (оксид алюминия) протекает дегидратация. Дегидратация — это отщепление молекул воды.

При дегидратации спиртов образуются алкены.

Например, при дегидратации этанола при высокой температуре образуется этилен.

Дегидратация более сложных молекул также протекает по правилу Зайцева.

Например, при дегидратации бутанола-2 преимущественно образуется бутен-2.

5. Дегалогенирование дигалогеналканов

Дигалогеналканы, в молекулах которых два атома галогена расположены у соседних атомов углерода, реагируют с активными металлами с образованием алкенов.

Как правило, для отщепления используют двухвалентные активные металлы — цинк или магний.

Источник

Оцените статью
Разные способы