Промышленные способы производства водорода

Производство водорода: технологии и перспективы в России

Производство водорода: обзор 4-х технологий + какое необходимо оборудование + перспективы производства и прибыльность.

Водород – один из многих элементов, которые в чистом виде практически не встречаются в природе, но активно используются в промышленности и в быту. Чаще всего в гидрогене нуждается пищевая и химическая промышленность – его используют в изготовлении пластмасс, аммиака, метанола и мыла.

Структура применения водорода в России

В быту гидроген могут использовать для обогрева помещений, как заменитель природного газа, а также как компонент биотоплива.

В лабораторных условиях водород начали получать ещё в XVII-ом веке. Для этого использовали, к примеру, цинк или соляную кислоту. В XXI-ом веке для промышленного производства такая методика слишком дорогая и неудобная.

Благо, наука не стоит на месте, и сейчас доступны несколько новых способов получения гидрогена. В том числе, они могут использоваться и на скромных мощностях. Отличие в процессах будет заключаться только в химическом и физическом воздействии на исходное сырьё.

За счет этого производство водорода стало доступно не только на крупных промышленных комплексах, но и в небольшом количестве для нужд населения. О том, как именно это происходит, пойдет речь в данной статье.

4 способа получения водорода

Существует более 100 различных методов добычи гидрогена – как теоретических, так и освоенных в промышленных масштабах. В зависимости от выбранного вами вида получения ресурса, производство водорода потребует различного оборудования, сырья и других ресурсов.

Рассмотрим 5 самых распространенных способов производства водорода.

Способ №1. Паровая конверсия

Более 50% всего водорода получается путём паровой конверсии воды и метана. При этом три основных составляющих (природный газ, водяной пар и оксиген) смешиваются в определённых пропорциях.

Таким образом, часть природного газа сгорает вместе с кислородом, тем самым поддерживая необходимую температуру для продолжения химической реакции. Метан, не выгоревший во время реакции конверсии, реагирует с водяным паром, образуя оксид углерода (то есть сажу) и непосредственно гидроген.

Простота и относительная лёгкость делает производство водорода путём паровой конверсии наиболее дешёвым из всех доступных.

Способ №2. Разделение метана на углерод и водород

Благодаря дешевизне метана, а также простому способу его получения, такой тип добычи водорода проще всего. Однако высокие температуры и потенциальная пожароопасность требуют дополнительных мер безопасности. К тому же, оборудование для полного процесса крекинга не из дешёвых.

Способ №3. Электролиз воды

Ещё один вид добычи гидрогена – электролиз воды. Это второй по распространённости метод добычи водорода, обеспечивающий достаточно высокую чистоту конечного продукта. Сопутствующим «бонусом» в этом технологическом процессе становится кислород, не менее важный элемент.

Для такого способа производства требуются значительные запасы воды. Тем не менее он совсем не требователен к её качеству – для электролиза можно использовать промышленную, дождевую или даже сточную воду.

Способ №4. Пиролиз

«Топливом» для этого могут служить отходы сельского хозяйства и пищевых производств:

  • Птичий помёт и другие побочные продукты животноводства.
  • Отходы рыбных, соко- и мясокомбинатов.
  • Некоторые виды технических культур, специально выращенных для получения биомассы.

При переработке всех этих биоотходов при помощи специальных бактерий образуется синтез-газ, в основном состоящий из двуокиси карбона и метана. Продуктом их переработки и становится гидроген.

Читайте также:  Способ применения таблеток амброксол

Такой способ производства набирает всё большую популярность ввиду того, что, помимо гидрогена, из биомассы добываются этилен и ацетилен. Также ценным сырьём являются и сами биоотходы, которые широко используются в сельском хозяйстве для производства удобрений.

Стоимость закупки оборудования и сырья в России

К примеру, оборудование для пиролиза производит не только водород, но и этин, этен и другие органические соединения. По желанию, любой из этих ресурсов можно реализовать, как отдельный продукт, либо использовать в качестве сырья в дальнейшей добыче гидрогена.

Стоимость оборудования варьируется в зависимости от предполагаемого объема производства. Например, небольшие «комнатные» генераторы можно приобрести по цене до 10000 долларов. Такого вполне может хватить для использования в хозяйственных нуждах – например, для обогрева помещений.

Далее идёт категория «потяжелее»: генератор электролиза, потребляющий 30 л воды в час, будет производить 30 куб. метров H и 15 куб. метров O₂ за час. Стоимость такого оборудования составляет около 110 тыс. долларов США. Чистота получаемого на выходе гидрогена оценивается в 99,6-99,8%.

Такой тип генераторов использует наиболее доступный ресурс для производства – воду и электричество. Как уже говорилось ранее, вода может быть абсолютно любого качества. К примеру, можно использовать дождевую воду, речную, либо морскую.

При покупке генератора стоит учесть, что некоторые из них работают только с дистиллированной, то есть технической водой!

Оборудование для добычи гидрогена из биосырья и полезных ископаемых посредством пиролиза, обойдётся гораздо дороже. К примеру, для производства 300 куб. метров H из биотоплива предприниматель должен быть готов выложить 400-800 тыс. долларов.

Тем не менее не стоит забывать, что при пиролизе добывается большое количество побочных продуктов, а чистота водорода достигает отметки в 99.999%. Сырьём для такого типа добычи могут выступать практически любые органические соединения. При этом срок окупаемости такой установки составляет до 5 лет.

Самый простой способ получения водорода.

Как получить водород для двигателя на воде?

Производство водорода – российские перспективы

Несмотря на то, что некоторые автомобильные и энергетические компании собирались использовать водород на российском рынке ещё в 2014, широкого распространения такой вид топлива пока что не получил. Несмотря на это, у нас имеются в свободной продаже автомобили с гибридным и водородным двигателями.

Но автомобили – не единственная сфера применения этого газа. Водород используется при сварке тугоплавких металлов, в пищевом производстве, а в промышленности при помощи гидрогена восстанавливают некоторые металлы из их оксидов.

Себестоимость добычи одного килограмма – 1-5 долл. США, а 1 м3 H на российском рынке стоит, в среднем, 1300 рублей. И это только с учётом «чистого» гидрогена, без побочных продуктов производства! А ведь, к примеру, стоимость 40 л ацетилена составляет 2,5-4 тыс. рублей.

Как видите, производство водорода – это выгодный бизнес, масштаб реализации которого можно «вписать» в имеющийся у вас бюджет. А что можно сказать о перспективах дела?

В будущем планируется значительное снижение себестоимости гидрогена, а также широкое распространение автомобилей с водородным двигателем, как альтернативы «классическому» топливу.

Вдобавок ко всему, при добыче газа можно использовать солнечную энергию, что ещё больше удешевляет себестоимость гидрогена. Всё это делает производство водорода перспективным и выгодным вложением.

Источник

Установка производства водорода

Назначение

Установка производства водорода предназначена для обеспечения техническим водородом вновь вводимых установок:

  1. изомеризации,
  2. гидроочистки,
  3. гидрокрекинга,
  4. каталитического риформинга.

Строительство установки производства водорода позволит:

  • ликвидировать недостающую потребность в водороде на НПЗ
  • производить водород высокой чистоты (не менее 99,5 % об.), что сокращает объём газа в последующих схемах потребления водорода;
  • улучшить экологические условия на территории предприятия за счёт применения в качестве топлива обессеренного газа с блока КЦА.
Читайте также:  Сколькими способами можно рассадить 3 учащихся за круглым столом с 3 стульями

Установка производства водорода

Методы производства водорода

  • паровая конверсия метана и природного газа;
  • газификация угля;
  • электролиз воды;
  • пиролиз;
  • частичное окисление;
  • биотехнологии.

Сырье и продукты

На российских НПЗ наиболее распространенным методом получения водорода является паровая конверсия углеводородов (СУГ, нафты, природного газа).

Продуктами являются чистый водород с концентрацией >99% об., а также отдувочный газ, который чаще всего используется в качестве топлива для печей.

Катализаторы

Наиболее часто используемыми в промышленности катализаторами для процесса паровой конверсии являются катализаторы на основе никеля, однако в ряде специфических процессов допускается использование благородных металлов платиновой группы.

Технологическая схема

В состав установки производства водорода входят следующие блоки и узлы:

  • блок подготовки и очистки сырья;
  • блок предриформинга;
  • блок парового риформинга;
  • блок конверсии и охлаждения конвертированного газа;
  • блок очистки водородсодержащего газа по технологии КЦА;
  • блок утилизации тепла продуктовых потоков и дымовых газов.

Принципиальная схема установки производства водорода методом паровой конверсии 1 – печь риформинга; 2 – реактор гидрообессеривания; 3 – адсорберы; 4 – реактор предриформинга; 5 – реактор конверсии СО; 6 – блок короткоцикловой адсорбции (КЦА)

Очистка сырья

Природный газ поступает в подогреватель, нагревается до температуры 40 °С. Для гидрирования сернистых соединений, содержащихся в сырье, до серо­водорода, требуется небольшое количество водорода.

С этой целью часть водоро­да, полученного на установке, подается в качестве рециркуляционного водорода в поток сырья. Смесь сырья и рециркулирующего водорода, последова­тельно поступая в теплообменники, нагревается до температуры 380 °С, необходимой для предварительной очистки сырья.

Подогретая газосырьевая смесь поступает в реактор гидрообессеривания, где происходит гидрирование соединений серы до H2S. Газосырьевая смесь из реактора последо­вательно проходит через адсорберы, где происходит улавливание хлоридов (НСl) и сернистых соединений (H2S). В каждом из этих реакторов имеется три слоя катализатора:

  • модифицирован­ный оксид алюминия для удаления НСl,
  • оксид цинка,
  • слой специального катализатора для эффективного и глубо­кого удаления H2S.

Предриформинг

Очищенная газосырьевая смесь смешивается с перегретым паром высокого давления. Соотношение расходов регулируется с поддержанием заданного мольного соотношения водяного пара и углерода. Величина значения этого соотношения зависит от типа сырья, подаваемого на установку.

Далее парогазовая смесь нагревается до температуры реакции 475 °С – 500 °С, в змеевике подогрева сырья предриформинга, расположенном в конвек­ционной секции печи парового риформинга и направляется в реактор пред­риформинга.

Предриформинг служит для превращения тяжелых углеводородов, содер­жащихся в сырье, в метан, а также для частичного проведения реакций рифор­минга, при этом эффективность процесса повышается.

В зависимости от типа перерабатываемого сырья, может наблюдаться уве­личение или снижение общей температуры по реактору. Так при переработке бен­зинов увеличивается общая температура по реактору, за счет преобладания про­текания реакций с экзотермическим эффектом, а при переработке природного газа температура по реактору падает, за счет протекания реакций с эндотермическим эффектом.

Риформинг

Парогазовая смесь нагревается до температуры 650 °С в змеевике по­догрева сырья риформинга, расположенном в конвекционной секции печи парового риформинга, и затем поступает в коллектор, расположенный в радиантной секции печи парового риформинга.

В радиантной секции печи парового риформинга смесь сырья и пара посту­пает в катализаторные трубы, находящиеся в радиантной секции печи парового риформинга Н-1, проходит сверху вниз катализаторные трубы. В результате реак­ции, протекающей на катализаторе, загруженном в катализаторные трубы, полу­чается равновесная смесь, состоящая из Н2, СО, СO2, СН4 и Н2O.

Для предотвращения образования кокса и отложения его на катализаторе технологический пар подается в избытке, превышая стехиометрическое количест­во, требуемого на реакцию.

Полученный конвертированный газ (парогазопродуктовая смесь) выходит из печи парового риформинга при температуре 888 °С и далее направляется в те­плообменник. В теплообменнике происходит охлаждение питательной воды до температуры 320-343 °С, регенерированное тепло используется для генериро­вания насыщенного пара высокого давления.

Читайте также:  Какими способами оформляется прямая речь

Общий тепловой эффект реакций парового риформинга является в сильной степени эндотермическим, поэтому для достижения требуемой степени конверсии необходим подвод тепла.

Конструкция печи парового риформинга

Печь имеет сложную конструкцию, разработанную с уче­том технологических требований процесса с целью обеспечения безопасной экс­плуатации и хорошими технико-экономическими показателями. Для обеспечения расчетной степени конверсии без перегрева внешней поверхности поддерживает­ся необходимая температура газа в катализаторных трубах. Благодаря небольшо­му диаметру труб увеличивается площадь теплообменной поверхности и улучша­ется перемешивание газа в слое катализатора. В результате печи риформинга ра­ботают при максимальных давлениях и температурах.

По конструкции печь состоит из двух одинаковых радиантных камер, рабо­тающих параллельно, и расположенной над ними общей конвекционной камеры. Процесс паровой конверсии метана осуществляется в реакционных трубах при температуре 780-888 °С за счет внешнего обогрева.

Конверсия окиси углерода и охлаждение синтез-газа

Водородсодержащий газ после парового риформинга и охлаждения поступает в реактор высокотемпе­ратурной конверсии, где избыточный пар превращает большую часть СО в С02 и Н2 при прохождении через слой катализатора.

Синтез-газ, подвергнутый конверсии, охлаждается, отдавая тепло потокам системы выработки водяного пара. Далее частично охлажденный синтез-газ поступает в воздушный, а затем на доохлаждение в водяной холодильник, где охлаждается до температуры 35 °С и поступает в сепаратор для разделения смеси на неочищенный водород и технологический конденсат.

Технологический конденсат смешивается с химочищенной водой, посту­пающей из сетей завода и направляется в деаэратор, а неочищенный водород подается в блок короткоцикловой адсорбции.

Короткоцикловая адсорбция водородсодержащего газа

Поток неочищен­ного водородсодержащего газа поступает в блок короткоцикловой адсорбции (КЦА), где происходит удаление примесей в процессе циклической адсорбции. Для выполнения заданной степени концентрирования водорода и удаления при­месей в процессе используются многочисленные адсорбционные слои. Принятая схема блока позволяет извлечь водород с концентрацией 99,5 % (об.) из кон­вертированного газа, а сбросной газ направляется в качестве топлива в реакторную печь.

В блоке КЦА происходит очистка конвертированного водородсодержащего газа от примесей метана, окислов углерода путем адсорбции загрязнений на ад­сорбенте при высоком давлении и десорбции при низком давлении.

Блок утилизации тепла дымовых газов

В блоке утилизации тепла дымовых газов и продуктовых потоков произво­дится водяной пар высокого давления за счет охлаждения дымовых газов и про­дуктовых потоков. Одновременно с этим предусмотрено использование тепла дымовых газов для нагрева питательной воды, перегрева производимого водяного пара и подогрева воздуха, подаваемого к горелкам печи.

Материальный баланс

Наименование продукта Измерение Сутки
един. итого %
Входы
Сырьевой газ т 276,00 22,30
Расход пара ВД в предриформинг т 633,60 51,20
Расход пара ВД в риформинг т 327,90 26,50
Сумма сырья т 1 237,50 100,00
Выходы
Водород с установки т 89,70
Расход отдувочного газа с блока КЦА на печь т 605,10
Расход технологического конденсата т 542,70
Сумма продуктов т 1 237,50

Достоинства и недостатки

Недостатки

  • Высокие выбросы дымовых газов в атмосферу
  • Высокие капитальные затраты
  • Высокая стоимость перегретого водяного пара

Достоинства

  • Наиболее проработанный и распространенный вид производства водорода в нефтехимической промышленности
  • Относительно низкие температуры процесса
  • Вариативность проекта установки в зависимости от требований заказчика

Существующие установки

Спрос на водород растет в связи с переходом на потребление более чистых и легких нефтяных топлив, в то время как нефтяное сырье становится все тяжелее. В связи с этим трудно представить современный НПЗ без установки производства водорода. УПВ может отсутствовать только в составе НПЗ, работающих по профилю первичной переработки нефти. Стоит отметить, что для производств, обладающих развитой архитектурой вторичных процессов, ресурсов одной УПВ может быть недостаточно.

Источник

Оцените статью
Разные способы