Альтернативные источники энергии для частного дома. Это не только энергия солнца и солнечные батареи
В последнее время у всех на слуху «зеленая энергетика». В Западных странах усиленно пытаются перейти на генерацию электроэнергии, которая полностью основана на базе возобновляемых (неисчерпаемых, с человеческой точки зрения) источников. Получится это или нет и в какие сроки — это уже другой вопрос. Но их маниакальное упорство в этом стремлении часто побеждает разум и элементарную логику. Ну да ладно — это их выбор и их путь.
Обычный среднестатистический человек в нашей стране, если речь заходит о «зеленой энергии» для частного дома, сразу представляет себе солнечные батареи, которыми устлана вся поверхность крыши домостроения. Да, это самый распространенный и реальный вариант обеспечить дом (полностью или частично) электроэнергией из «дармового» и неисчерпаемого источника. Вот только для того, чтобы превратить энергию Солнца в электричество придется закупать и устанавливать довольно таки дорогое оборудование. А вот о стабильности получения необходимого объема такой электроэнергии мечтать не приходится. Выработка электроэнергии будет зависеть от географии (региона, в котором находится дом), погоды, сезона, времени суток и т.д.
Но не только солнечный свет можно использовать как источник возобновляемой энергии, который можно использовать для частного дома!
Энергия ветра
Все видели фотографии (а может быть и не только фотографии) огромных полей с установленными на них гигантскими ветрогенераторами, длина лопастей которых превышает 50 метров. Ветер приводит в движение лопасти ветрогенератора, которые вращают турбину. Вырабатывается электроэнергия. Объем выработки электроэнергии зависит от скорости (силы) ветра, воздействующего на лопасти. Но это, так сказать, промышленные масштабы. А что с выработкой электроэнергии ветряком (ветрогенератором, ветроустановкой, ВЭС) для частного дома? Существуют и мини ветроустановки, которые с успехом можно использовать для выработки электроэнергии для бытовых нужд в частном доме. Мини ветроустановки прекрасно будут работать в степной и гористой местностях и в прибрежных районах. При высоте мачты в 5 метров, длине лопасти в 1 метр (для 4-х лопастных установок) и ветре 12-15 метров в секунду, ветроустановка способна выдавать мощность приблизительно до 1кВт. Вырабатывать же электроэнергию ветряки начинают лишь при минимальной скорости ветра 3-4 метра в секунду. При такой «начальной» скорости ветра, ветроустановка, конечно не сможет выдавать заявленную производителем номинальную мощность. Поэтому годовая выработка электроэнергии ветрогенератором рассчитывается в зависимости от среднегодовой скорости ветра в месте установки ветряка. Установка четырех таких ветряков теоретически может полностью обеспечить потребность в электроэнергии среднестатистического частного дома. Но понятно, что наличие ветра и его скорость вещи непредсказуемые. Соответственно, даже с учетом аккумулирования излишков электроэнергии в то время, когда ветряки работают на 100%, обеспечить надежное и бесперебойное снабжение частного дома электроэнергией, исключительно вырабатываемой ветряками, довольно проблематично.
Комплект оборудования для мини ВЭС и её монтаж обойдутся, конечно, очень недешево. При выборе удачного места установки мачты с ветряком и использовании такой ветряной электростанции в качестве альтернативного источника электроэнергии, можно окупить все затраты примерно за 5-20 лет (опять же по заявлению производителей). Да, срок не маленький, но после этого срока электроэнергия, вырабатываемая ветряком, будет практически бесплатной.
Стоимость ветровой электроэнергии зависит от многих параметров, но приблизительно она в 2-3 раза дороже электроэнергии, вырабатываемой на гидроэлектростанциях и сопоставима со стоимостью электроэнергии, вырабатываемой на ТЭС.
При использовании ветряка в качестве источника электроэнергии для дома, в силу главного недостатка ветряков (нет ветра — нет электроэнергии), полностью отказаться от сетевого электричества вряд ли получится. Придется комбинировать источники электроэнергии — ветряк плюс централизованная электрическая сеть.
Энергия воды
Мини гидроэлектростанция вполне может стать альтернативным источником электроэнергии для частного дома. Они довольно компактны и не требую строительства плотины или других вспомогательных сооружений. Правда необходимым условием для получения электроэнергии таким способом является наличие на небольшом расстоянии от домостроения реки, канала или водовода. Да и скорость потока воды должна быть не менее 0,7 метра в секунду. Генератор такой мини ГЭС Погружается в свободный поток реки (канала, водовода) и преобразует вращение турбины в электрическую энергию. Обычно мощность гидроагрегатов мини ГЭС для дома составляет от 0,3 до 5 кВт. С помощью мини ГЭС можно полностью обеспечить частный дом электроэнергией. Мини ГЭС накопительного типа позволяют «запасать» избыток вырабатываемой электроэнергии в аккумуляторах и при увеличении потребления электроэнергии в доме, выше вырабатываемой мини ГЭС на текущий момент, восполнять дефицит электроэнергии из аккумуляторов.
Мини ГЭС — это одно из самых перспективный направлений альтернативной энергетики. Работа мини ГЭС не зависит от погодных условий. И хоть оборудование мини ГЭС стОит дорого, но производители заявляют о сроке окупаемости таких установок всего за 2-4 года, в то время, как срок эксплуатации мини ГЭС составляет порядка 20 лет.
Геотермальная энергия
Геотермальную энергию (тепло недр земли) используют обычно в местах выброса горячих сейсмических источников на Дальнем Востоке, Камчатке и т.д. Да и используется этот вид энергии почти повсеместно в промышленных масштабах. Но благодаря развитию технологий теперь возможно использовать геотермальную энергию «в частном порядке» для отопления дома и в перспективе для выработки электроэнергии.
Принцип отопления дома с помощью геотермальных источников энергии очень похож на принцип работы обычного кондиционера, работающего в режиме обогрева. Тепловой насос (основной элемент такой системы отопления) имеет два контура. Первый контур — это обычная система отопления дома (трубы, батареи отопления). Второй контур — находится под землей или под водой. Теплоноситель второго контура вода. Она принимает температуру среды, через которую проходит, поступает в тепловой насос и нагревает теплоноситель первого контура, который циркулирует по системе отопления дома.
Современные техника и технологии позволяют обогревать данным методом частные дома, находящиеся в любом регионе (не обязательно в районах с горячими сейсмическими источниками). Небольшая разница температур (всего в несколько градусов между температурой на поверхности земли и на небольшой глубине) позволяет получить тепловую энергию, которой вполне хватает для отопления дома.
Положение с выработкой электроэнергии для частных домов с помощью геотермальных источников немного сложнее. Принцип выработки такой электроэнергии известен давно и используется в работе больших геотермальных электростанций. А вот на уровне «мини» такие электростанции еще практически не выпускаются.
Развитие геотермальной энергетики имеет огромные перспективы, так как температура геотермальных источников стабильна и не зависит ни от погодных условий, ни от времени года.
Подводя итог можно сказать, что использование альтернативных источников энергии в частном доме — это не фантастика, а реальность современной жизни. Не смотря на то, что выпускаемое оборудование для выработки электроэнергии из любого альтернативного (возобновляемого) источника стОит, на сегодняшний день, довольно дорого и имеет относительно большой срок окупаемости, такие «альтернативные мини электростанции» всё чаще можно встретить на наших просторах.
Несомненно, с развитием технологий, стоимость таких альтернативных микро и мини электростанций, срок их окупаемости и стоимость вырабатываемой электроэнергии будут уменьшаться!
Источник
Виды альтернативной энергетики. Справка
Альтернативная энергетика – совокупность перспективных способов получения энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при низком риске причинения вреда экологии.
Альтернативный источник энергии – способ, устройство или сооружение, позволяющее получать электрическую энергию (или другой требуемый вид энергии) и заменяющий собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле.
Виды альтернативной энергетики: солнечная энергетика, ветроэнергетика, биомассовая энергетика, волновая энергетика, градиент-температурная энергетика, эффект запоминания формы, приливная энергетика, геотермальная энергия.
Солнечная энергетика – преобразование солнечной энергии в электроэнергию фотоэлектрическим и термодинамическим методами. Для фотоэлектрического метода используются фотоэлектрические преобразователи (ФЭП) с непосредственным преобразованием энергии световых квантов (фотонов) в электроэнергию.
Термодинамические установки, преобразующие энергию солнца вначале в тепло, а затем в механическую и далее в электрическую энергию, содержат «солнечный котел», турбину и генератор. Однако солнечное излучение, падающее на Землю, обладает рядом характерных особенностей: низкой плотностью потока энергии, суточной и сезонной цикличностью, зависимостью от погодных условий. Поэтому изменения тепловых режимов могут вносить серьезные ограничения в работу системы. Подобная система должна иметь аккумулирующее устройство для исключения случайных колебаний режимов эксплуатации или обеспечения необходимого изменения производства энергии во времени. При проектировании солнечных энергетических станций необходимо правильно оценивать метеорологические факторы.
Геотермальная энергетика – способ получения электроэнергии путем преобразования внутреннего тепла Земли (энергии горячих пароводяных источников) в электрическую энергию.
Этот способ получения электроэнергии основан на факте, что температура пород с глубиной растет, и на уровне 2–3 км от поверхности Земли превышает 100°С. Существует несколько схем получения электроэнергии на геотермальной электростанции.
Прямая схема: природный пар направляется по трубам в турбины, соединенные с электрогенераторами. Непрямая схема: пар предварительно (до того как попадает в турбины) очищают от газов, вызывающих разрушение труб. Смешанная схема: неочищенный пар поступает в турбины, а затем из воды, образовавшийся в результате конденсации, удаляют не растворившиеся в ней газы.
Стоимость «топлива» такой электростанции определяется затратами на продуктивные скважины и систему сбора пара и является относительно невысокой. Стоимость самой электростанции при этом невелика, так как она не имеет топки, котельной установки и дымовой трубы.
К недостаткам геотермальных электроустановок относится возможность локального оседания грунтов и пробуждения сейсмической активности. А выходящие из-под земли газы могут содержать отравляющие вещества. Кроме того, для постройки геотермальной электростанции необходимы определенные геологические условия.
Ветроэнергетика – это отрасль энергетики, специализирующаяся на использовании энергии ветра (кинетической энергии воздушных масс в атмосфере).
Ветряная электростанция – установка, преобразующая кинетическую энергию ветра в электрическую энергию. Состоит она из ветродвигателя, генератора электрического тока, автоматического устройства управления работой ветродвигателя и генератора, сооружений для их установки и обслуживания.
Для получения энергии ветра применяют разные конструкции: многолопастные «ромашки»; винты вроде самолетных пропеллеров; вертикальные роторы и др.
Производство ветряных электростанций очень дешево, но их мощность мала, и их работа зависит от погоды. К тому же они очень шумны, поэтому крупные ветряные электростанции даже приходится на ночь отключать. Помимо этого, ветряные электростанции создают помехи для воздушного сообщения, и даже для радиоволн. Применение ветряных электростанций вызывает локальное ослабление силы воздушных потоков, мешающее проветриванию промышленных районов и даже влияющее на климат. Наконец, для использования ветряных электростанций необходимы огромные площади, много больше, чем для других типов электрогенераторов.
Волновая энергетика – способ получения электрической энергии путем преобразования потенциальной энергии волн в кинетическую энергию пульсаций и оформлении пульсаций в однонаправленное усилие, вращающее вал электрогенератора.
По сравнению с ветровой и солнечной энергией энергия волн обладает гораздо большей удельной мощностью. Так, средняя мощность волнения морей и океанов, как правило, превышает 15 кВт/м. При высоте волн в 2 м мощность достигает 80 кВт/м. То есть, при освоении поверхности океанов не может быть нехватки энергии. В механическую и электрическую энергию можно использовать только часть мощности волнения, но для воды коэффициент преобразования выше, чем для воздуха – до 85 процентов.
Приливная энергетика, как и прочие виды альтернативной энергетики, является возобновляемым источником энергии.
Для выработки электроэнергии электростанции такого типа используют энергию прилива. Для устройства простейшей приливной электростанции (ПЭС) нужен бассейн – перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены гидротурбины, которые вращают генератор.
Во время прилива вода поступает в бассейн. Когда уровни воды в бассейне и море сравняются, затворы водопропускных отверстий закрываются. С наступлением отлива уровень воды в море понижается, и, когда напор становится достаточным, турбины и соединенные с ним электрогенераторы начинают работать, а вода из бассейна постепенно уходит.
Считается экономически целесообразным строительство приливных электростанций в районах с приливными колебаниями уровня моря не менее 4 м. Проектная мощность приливной электростанции зависит от характера прилива в районе строительства станции, от объема и площади приливного бассейна, от числа турбин, установленных в теле плотины.
Недостаток приливных электростанции в том, что они строятся только на берегу морей и океанов, к тому же они развивают не очень большую мощность, да и приливы бывают всего лишь два раза в сутки. И даже они экологически не безопасны. Они нарушают нормальный обмен соленой и пресной воды и тем самым – условия жизни морской флоры и фауны. Влияют они и на климат, поскольку меняют энергетический потенциал морских вод, их скорость и территорию перемещения.
Градиент-температурная энергетика. Этот способ добычи энергии основан на разности температур. Он не слишком широко распространен. С его помощью можно вырабатывать достаточно большое количество энергии при умеренной себестоимости производства электроэнергии.
Большинство градиент-температурных электростанций расположено на морском побережье и используют для работы морскую воду. Мировой океан поглощает почти 70% солнечной энергии, падающей на Землю. Перепад температур между холодными водами на глубине в несколько сотен метров и теплыми водами на поверхности океана представляет собой огромный источник энергии, оцениваемый в 20-40 тысяч ТВт, из которых практически может быть использовано лишь 4 ТВт.
Вместе с тем, морские теплостанции, построенные на перепаде температур морской воды, способствуют выделению большого количества углекислоты, нагреву и снижению давления глубинных вод и остыванию поверхностных. А процессы эти не могут не сказаться на климате, флоре и фауне региона.
Биомассовая энергетика. При гниении биомассы (навоз, умершие организмы, растения) выделяется биогаз с высоким содержанием метана, который и используется для обогрева, выработки электроэнергии и пр.
Существуют предприятия (свинарники и коровники и др.), которые сами обеспечивают себя электроэнергией и теплом за счет того, что имеют несколько больших «чанов», куда сбрасывают большие массы навоза от животных. В этих герметичных баках навоз гниет, а выделившийся газ идет на нужды фермы.
Еще одним преимуществом этого вида энергетики является то, что в результате использования влажного навоза для получения энергии, от навоза остается сухой остаток являющийся прекрасным удобрением для полей.
Также в качестве биотоплива могут быть использованы быстрорастущие водоросли и некоторые виды органических отходов (стебли кукурузы, тростника и пр.).
Эффект запоминания формы – физическое явление, впервые обнаруженное советскими учеными Курдюмовым и Хондросом в 1949 году.
Эффект запоминания формы наблюдается в особых сплавах и заключается в том, что детали из них восстанавливают после деформации свою начальную форму при тепловом воздействии. При восстановлении первоначальной формы может совершаться работа, значительно превосходящая ту, которая была затрачена на деформацию в холодном состоянии. Таким образом, при восстановлении первоначальной формы сплавы вырабатывают значительно количество тепла (энергии).
Основным недостатком эффекта восстановления формы является низкий КПД – всего 5-6 процентов.
Материал подготовлен на основе информации открытых источников
Источник