Продувка инертным газом по способу sab

ПРОДУВКА МЕТАЛЛА ИНЕРТНЫМИ ГАЗАМИ

Влияние продувки инертными газами на состав металла в известной мере аналогично обработке вакуумом. При продувке инертными газами массу ме­талла пронизывают тысячи пузырей инертного газа, каждый из которых слу­жит своеобразной маленькой вакуум­ной камерой, так как парциальные давления водорода и азота в таком пу­зыре равны нулю. При продувке инер­тным газом происходит интенсивное перемешивание металла, усреднение его состава. В тех случаях, когда по­верхность металла покрыта шлаком заданного состава, при перемешива­нии улучшаются условия протекания ассимиляции таким шлаком неметал­лических включений. Большое коли­чество пузырей инертного газа приво­дит к интенсификации процесса газовыделения, так как пузыри являются готовыми полостями с развитой по­верхностью раздела, что очень важно для образования новой фазы. Продув­ка инертным газом сопровождается снижением температуры металла (газ нагревается и интенсивно уносит теп­ло), поэтому продувку инертным га­зом часто используют для регулирова­ния температуры металла в ковше. Проведение операции продувки боль­ших масс металла инертными газами в ковше проще и дешевле, чем обработ­ка вакуумом, поэтому, если это воз­можно, обработку вакуумом заменяют продувкой инертными газами через пористые пробки в днище ковша или через полый стопор. Для процесса продувки металла инертными газами характерно: 1) уменьшение содержа­ния газов в металле; 2) интенсивное перемешивание расплава, улучшение условий протекания процессов пере­вода в шлак неметаллических включе­ний, при этом состав металла усред­няется; 3) улучшение условий проте­кания реакции окисления углерода; 4) снижение температуры металла.

Метод продувки инертными газами для повышения качества металла по­лучил промышленное распростране­ние по мере освоения технологии по­лучения больших количеств дешевого аргона как сопутствующего продукта при производстве кислорода. На кис­лородных станциях аргон выделяют при ректификации жидкого воздуха. Если завод имеет мощную кислород­ную станцию, то объем попутно полу­чающегося аргона достаточен для об­работки больших количеств стали.

Для продувки металла, не содержа­щего нитридообразующих элементов (хрома, титана, ванадия и т. п.), часто используют азот. При 1550—1600 ºС процесс растворения азота в жидком железе не получает заметного разви­тия. Расход инертного газа составляет обычно 0,1—3,0 м 3 /т стали. В зависи­мости от массы жидкой стали в ковше снижение температуры стали при таком расходе аргона может проис­ходить со скоростью 2,5—4,5 °С/мин (в технологии без продувки скорость охлаждения 0,5—1,0 °С/мин). При продувке тепло дополнительно расхо­дуется на нагрев инертного газа и из­лучение активно перемешиваемыми поверхностями металла и шлака. Большая часть тепловых потерь связа­на с увеличением теплового излуче­ния, поэтому используется такой про­стой и достаточно эффективный при­ем, как накрывание ковша крышкой при продувке. Этим одновременно до­стигается снижение степени окисле­ния обнажающегося при продувке ме­талла. Простым и надежным способом подачи газа является использование так называемого ложного стопора (рис. 19.13). Продувочные устройства типа ложного стопора безопасны в эк­сплуатации, так как в схему футеровки ковша не нужно вносить никаких из­менений, но они обладают малой стойкостью — в результате интенсив­ного движения металлогазовой взвеси вдоль стопора составляющие его огне­упоры быстро размываются.

Большое распространение получил способ продувки через устанавливае­мые в днище ковша пористые огне­упорные пробки: в тех случаях, когда продувку проводят одновременно че­рез несколько пробок, эффективность воздействия инертного газа на металл существенно возрастает. Пористые ог­неупорные пробки выдерживают не­сколько продувок. Наряду с высокой газопроницаемостью пористые проб­ки должны обладать огнеупорностью,

Рис. 19.13.Фурма в виде ложного стопора для продувки ме­талла в ковше

Рис. 19.14.Конструкция устройства пробки для подачи аргона в металл:

1 — пробка из гранул огнеупорного материала;

2— огнеупорный корпус; 3— пустотелый кирпич;

4 — огнеупорная фурма; 5— стальная трубка

Рис. 19.15.Схема движения газометалличес­ких потоков в ковше при продувке металла через пористые швы днища

достаточной для надежной работы при 1550—1650 °С, а также термической и химической стойкостью к металлу и шлаку. Один из вариантов конструк­ции пробки показан на рис. 19.14. Ис­пользование пробок данной конструк­ции обеспечивает интенсивное пере­мешивание металла.

Распространение получил также метод продувки металла через пористое днище ковша 1 . Лучшим в эксплуа­тации оказалось днище из обычных огнеупоров с пористыми швами (рис. 19.15). Стойкость подобного днища такова, что оно служит всю кампанию ковша и заменяется только при ре­монте футеровки.

1 В зарубежной литературе такая техноло­гия обозначается SS (от англ, strong stirring— сильное перемешивание).

На рис. 19.16 приведена схема про­дувочной фурмы с газовой защитой. Через такую фурму можно вдувать также и порошки. Получают распрос­транение и другие способы. Степень протекания всех перечисленных выше процессов зависит от продолжитель­ности продувки и от ее интенсивности (т. е. в конечном счете от расхода инертного газа):

1) продувка ерасходом газа до 0,5 м 3 /т стали достаточна для усреднения химического состава и температуры металла;

2) продувка с интенсивностью до 1,0м 3 /т влияет на удаление из металла неметалличес­ких включений;

3)для эффективной дегазации необходим расход инертного газа2—3 м 3 /т металла.

Читайте также:  Как решать уравнения американским способом

Во многих случаях продувку инерт­ным газом проводят одновременно с обработкой металла вакуумом. В этом случае расход инертного газа может быть существенно уменьшен. Совме­щение продувки инертным газом с об-

Рис.19.16. Схема про­дувочной фурмы с га­зовой защитой:

1 — фурма; 2 — подвод газа на продувку; 3 — конус; 4 — подвод газа на струй­ную защиту; 5— футеров­ка; 6— крепление конуса; 7— продувочное сопло

Рис. 19.17.Схема САВ-процесса:

/ — ковш с металлом; 2— крышка ковша; 3— уст­ройство для загрузки ферросплавов; 4— отверстие для отбора проб; 5— синтетический шлак; 6— ши­берный затвор; 7— пористая пробка для введения аргона

работкой шлаком способствует повы­шению эффективности использования шлаковых смесей, так как при ин­тенсивном перемешивании при про­дувке увеличиваются продолжитель-

Рис. 19.18.Схема SAB-процесса:

1 — ковш с металлом; 2— погружной огнеупорный колпак; 3 — отверстие для подачи материалов; 4 — синтетический шлак; 5 — окислительный шлак; 6— шиберный затвор; 7—пористая пробка для введе­ния аргона

ность контакта и сама поверхность контакта металла со шлаком. Если при этом ковш, в котором осуществляется такая обработка, накрыт крышкой, то при условии создания атмосферы инертного газа в пространстве между крышкой и поверхностью шлака ме­талл будет защищен от окисления, а снижение потерь тепла позволит уве­личить время контакта металла с жид­ким шлаком. На этом принципе осно­вана разработанная на одном из заво­дов Японии технология так называе­мого CAB ‘-процесса. Как видно из рис. 19.17, в данной технологии пре­дусмотрено наличие на поверхности металла в ковше синтетического шла­ка заданного состава. В тех случаях, когда из плавильного агрегата в ковш попадает окисленный конечный шлак, применим метод, названный в Японии SAB 2 -процессом (рис. 19.18). Введение в металл добавок в нейт­ральной атмосфере и хорошее их усво­ение при перемешивании металла инертным газом обеспечивается при несколько усложненном способе за­щиты зоны продувки — это так назы­ваемый САS 3 -процесс. По этому способу в ковш сверху вводят огнеупор­ный колпак, закрытый снизу расплав­ляющимся металлическим конусом таким образом, чтобы внутрь этого колпака не попал шлак. Через колпак вводят ферросплавы, снизу в ковш по­дают аргон для продувки. Этот метод позволяет достичь высокой степени усвоения элементов, вводимых с до­бавками в металл (рис. 19.19).

1 От англ, capped argon bubbling.

2 От англ, sealed argon bubbling.

3 Composition adjustment by sealed — регули­рование состава при «закрытой» продувке ар­гоном.

Рис. 19.19.Схема CAS-процесса:

1— ковш с металлом; 2 — погружной колпак из вы­сокоглиноземистых огнеупоров; 3— отверстие для отбора проб; 4 — люк для введения ферросплавов; 5—расплавляющийся конус из листовой стали, препятствующий попаданию шлака при опускании колпака в металл; 6— пористая пробка для введения аргона

На рис. 19.20 представлена схема CAS-установки усложненной конст­рукции, смонтированной в конвертер­ном цехе завода фирмы Wheeling Pittsburgh Steel (США). На этой уста­новке предусмотрена возможность по­догрева стали за счет теплоты реакции окисления кислородом вводимого в металл алюминия. Установка названа CAS-OB 1 .

В тех случаях, когда необходимо перемешивать металл в ковше под шлаком длительное время, в крышку ковша опускают электроды и подогре­вают ванну. При этом исключается ис­пользование обычного шамота в каче­стве огнеупорного материала ковша, так как продолжительный контакт жидкоподвижного высокоосновного шлака с шамотной футеровкой, состоящей из кремнезема и глинозема, при­ведет к быстрому выходу футеровки из строя. Ковш футеруют основными высокоогнеупорными материалами.

1 От англ. CAS-Oxygen Blowing (см. снос­ку 3 на с. 297).

Рис. 19.20.Схема установки CAS-OB:

1 — Фурма для продувки кислородом с нагревом ста­ли; 2 — желоб для подачи легирующих; 3 — дымо­ход; 4 — фурма для вдувания порошков; 5 — устрой­ство для подъема колпака; 6— струя кислорода; 7— колпак; 8 — перемешивающий газ; 9—пористая пробка

Рис. 19.21.Совершенствование конструкции сталеразливочных ковшей и методов продув­ки металла инертным газом:

а — ковш, снабженный затвором шиберного типа; б— продувка газа через днище; в — подача газа сни­зу через стенку ковша; г — продувка через ложный стопор; д — продувка металла в ковше, накрытом крышкой; г — интенсивная продувка через ряд фурм или пористое днище; ж — продувка снизу в ковше с крышкой, через которую вводят добавки; з — про­дувка в ковше под вакуумом

ящей из кремнезема и глинозема, при­ведет к быстрому выходу футеровки из строя. Ковш футеруют основными высокоогнеупорными материалами.

Сочетание продувки инертным газом с заменой футеровки ковша позволяет добиться заметного снижения загряз­нения металла кислородом. Если при обычной технологии для раскислен­ной алюминием стали произведение [А1] 2 -[О] 3 достигает значения 10 -8 — 10 -9 , то при использовании ковшей с основной футеровкой при продувке аргоном оно составляет

На рис. 19.21 отражена эволюция методов продувки металла инертным газом.

Источник

Продувка стали инертным газом

Продувку осуществляют в режиме образования пузырей инертного газа, перемешивающих жидкий металл в ковше. Инертный газ (чаще аргон) вводят различными способами в нижнюю часть ковша (рис. 9).

Читайте также:  Щебень укладываемый способом заклинки
а – через погружаемую фурму; б – через пористый блок; в – через пористые швы в днище; г – через шиберный затвор; д – через боковую стенку ковша; е – способ SAB
Рис. 9 – Способы продувки металла в ковше

Пузыри инертного газа перемешивают металл, выравнивают состав, если необходимо, то не только выравнивают, но и снижают до заданного уровня его температуру. Растворенные в металле водород и азот интенсивно выделяются в газовые полости и удаляются, в результате чего содержание газов в стали существенно снижается. Вследствие сильного перемешивания металла облегчается укрупнение и удаление в шлак неметаллических включений. Если требуется понизить содержание углерода в металле, то к инертному газу можно добавить кислород.

Расход инертного газа поддерживают в пределах 0,5-2,5 м 3 /т в зависимости от необходимой степени обработки. Совмещение продувки инертным газом с выдержкой в условиях разрежения (вакуумированием) позволяет уменьшить расход инертного газа. Применение синтетического шлака при продувке инертным газом способствует более эффективному удалению из металла вредных примесей и неметаллических включений.

Дата добавления: 2015-06-22 ; просмотров: 1743 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Метод продувки инертными газами

Для повышения качества металла получил промышленное рас­пространение по мере освоения технологии получения деше­вого аргона в больших количествах (как сопутствующего продукта при производстве кислорода, как известно, в воз­духе

1 % Аг). На кислородных станциях аргон выделяют при ректификации жидкого воздуха. Если завод имеет мощную кислородную станцию, то объем попутно получающегося арго­на достаточен для обработки больших количеств стали. В тех странах, где имеются запасы гелия, для продувки ис­пользуют также гелий.

Рис.10.10. Фурма в виде «ложного стопора» для вдувания порошкообразных реагентов в металл.

Для продувки металла, не содержащего нитридообразующих элементов (хрома, титана, ванадия и т.п.), часто исполь­зуют азот, т.к. при 1550-1600 °С процесс растворения азо­та в жидком железе не получает заметного развития. Расход инертного газа составляет обычно 0,1-3,0 м 3 /т стали. В зависимости от массы жидкой стали в ковше снижение темпе­ратуры стали при таком расходе аргона составляет 2,5-4,5 °С/мин (без продувки металл в ковше охлаждается со скоростью 0,5-1,0 °С/мин). Тепло при продувке дополни­тельно затрачивается на нагрев инертного газа и излучение активно перемешиваемыми поверхностями металла и шлака. Большая часть тепловых потерь связана с увеличением теплового излучения, поэтому такой прием, как накрывание ковша крышкой при продувке позволяет заметно уменьшить потери тепла; при этом одновременно снижается степень окисления обнажающегося при продувке металла. Простым и надежным способом подачи газа является использование так называемого ложного стопора (рис. 10.10). Продувочные уст­ройства типа ложного стопора безопасны в эксплуатации, так как в схему футеровки ковша не нужно вносить никаких изменений, но они обладают малой стойкостью. В результате интенсивного движения металл-газовой взвеси вдоль стопора составляющие его огнеупоры быстро размываются.

Большое распространение получил способ продувки через устанавливаемые в днище ковша пористые огнеупорные встав­ки или пробки (рис. 10.11); в тех случаях, когда продувку проводят одновременно через несколько пробок (вставок), эффективность воздействия инертного газа на металл су­щественно увеличивается.

Рис.10.11.Конструкция пористой пробки(вставки) для продувки металла аргоном:

1-вставка с каналами для прохода газов; 2-огнеупорный корпус;3-гнездовой кирпич

Продувка с расходом газа до 0,5 м 3 /т стали достаточна для усреднения химического сос­тава и температуры металла; продувка с интенсивностью до 1,0 м 3 /т влияет на удаление из металла неметаллических включений; для эффективной дегазации необходим расход инертного газа 2-чЗм 3 /т металла.

Во многих случаях продувку инертным газом проводят одновременно с обработкой металла вакуумом. В этом случае расход инертного газа может быть существенно уменьшен. Совмещение продувки инертным газом обработкой шлаком спо­собствует повышению эффективности использования шлаковых смесей, так как интенсивное перемешивание при продувке увеличивает продолжительность и поверхность контакта ме­талла со шлаком. Если при этом ковш, в котором осуществ­ляется такая обработка, накрыт крышкой, то наличие в пространстве между крышкой и поверхностью шлака атмосферы инертного газа предохраняет металл от окисления, а сниже­ние потерь тепла позволяет увеличить продолжительность контакта металла с жидким шлаком. На этом принципе осно­вана разработанная на одном из заводов Японии технология так называемого САВ-процесса (от слов Capped-Argon-Bubb- ling) (рис. 10.12); данная технология предусматривает нали­чие на поверхности металла в ковше синтетического шлака заданного состава.

В тех случаях, когда из плавильного агрегата в ковш попадает какое-то количество конечного окисленного шлака (например, при выпуске плавки из конвертера), используют метод, названный металлургами Японии SAB-процессом (рис. 10.13).

Введение в металл добавок в нейтральной атмосфере и хорошее их усвоение при перемешивании металла инертным газом обеспечивается в несколько усложненном способе за­щиты зоны продувки, названном CAS-процессом.

По этому способу в ковш сверху вводят огнеупорный кол­пак, закрытый снизу расплавляющимся металлическим кону­сом, таким образом, чтобы внутрь этого колпака не попал шлак; затем снизу под колпак подают аргон.

Читайте также:  Способы дезактивации радиоактивных отходов

Рис.10.12.Схема САВ-процесса:

1-ковш с металлом; 2-крышка ковша;3-устройство для загрузки ферросплавов;

4-отверстие для отбора проб; 5-синтетический шлак;6-шиберный затвор;7-пористая пробка для введения аргона

Рис.10.13. Схема SАВ-процесса:

1-подача флюсов и добавок; 2-синтетический шлак; 3-окислительный конечный шлак.

Аргонокислородная продувка.

Влияние продувки металла инертным газом на уменьшение парциального давления монооксида углерода, образующегося при окислении углерода, использовано при разработке тако­го процесса, как аргонокислородное обезуглероживание или аргонокислородное рафинирование (АКР) .

При продувке металла кислородом равновесие реакции [С] + 1/2О2(г) = СОг определяется парциальным давлением кислорода и образующегося монооксида углерода. Продувая металл смесью кислорода с аргоном, мы добиваемся «разбав­ления» пузырей СО аргоном и соответствующего сдвига впра­во равновесия реакции. Окислительный потенциал газовой фазы при этом достаточен для проведения реакций окисления примесей ванны.

Для осуществления процесса аргонокислородного рафини­рования создан агрегат, обычно именуемый AOD-конвертер (рис.10.14). Конструкция фурм для подачи смеси аргона и ки­слорода позволяет в широких пределах регулировать соотно­шение О2:Аг; при этом соответственно меняется окислитель­ный потенциал вдуваемой газовой смеси, вплоть до продувки одним аргоном (обычно в заключительной стадии плавки). Если при этом продувку вести под высокоосновным шлаком, обеспечивается также эффективная десульфурация расплава.

Сравнительная простота организации аргонокислородной продувки, высокая производительность агрегатов и возмож­ность изменять в широких пределах окислительный потенциал газовой фазы (отношение О2: Аг) приводят к непрерывному расширению сферы распространения этого метода. Этот метод используют для производства не только коррозионностойких, но также и электротехнических, конструкционных и других сталей. Этот метод позволяет получать в конвертере высо­кохромистые стали непосредственно из чугуна с использова­нием в качестве шихтового материала хромистой руды. Жид­кий чугун подвергают внедоменной обработке (обескремниванию, дефосфорации), после чего заливают в конвертер. В процессе продувки в конвертере осуществляют обезуглерожи­вание, десульфурацию и легирование хромом. Часть хрома вводят в металл с феррохромом, а часть — с хромистой рудой, оксиды которой восстанавливаются углеродом чугуна.

Рис.10.14. Кострукция конвертера для аргонокислородной продувки (АКР-процесс;AOD-процесс)

На одном из заводов Японии организовали производство коррозионностойкой стали из расплава никелевых и хромистых руд. Никелевую руду с высоким содержанием железа подвер­гают дроблению, обогащению и предварительному нагреву в смеси с углеродистым восстановителем и в нагретом (

1000 °С) состоянии загружают в рудовосстановительную печь, в которой получают расплав с 13—15 % Ni.

Хромистую руду также подвергают предварительной обра­ботке и в нагретом (

500 °С) состоянии загружают в рудо­восстановительную печь, в которой получают расплав с 40-43% Сг. Расплавы смешивают в ковше и заливают в конвер­тер, в котором подвергают аргонокислородной продувке для получения специальных высокохромистых никельсодержащих коррозионностойких сталей.

По сравнению с известным способом получения таких ста­лей из скрапа по схеме дуговая электропечь — конвертер аргонокислородной продувки затраты энергии в новом про­цессе ниже, содержание неметаллических включений и азота меньше, поскольку используют первородную шихту и не про­исходит образование атомарного азота в зоне продувки.

Обработка стали шлаками

В тех случаях, когда основную роль в удалении примеси выполняет шлаковая фаза, скорость процесса пропорциональ­на величине межфазной поверхности шлак—металл, интенсив­ности и продолжительности перемешивания металла и шлака. На практике используют ряд технологий. Одна из них-использование высокоосновного и малоокисленного конечного шлака электроплавки. Если при этом в электропечи распла­вить лигатуру и смешать ее (вместе с таким шлаком) с ме­таллом, выплавленном в конвертере или мартеновской печи, получается так называемый «совмещенный» процесс (рис. 10.15).

Рис.10.15. Схема совмещенного процесса раскисления, легирования и рафинирования стали.

Падая с большой высоты в ковш, струя металла энергично премешивается с лигатурой и высокоосновным, раскисленным шлаком, происходит раскисление, легирование и десульфурация стали.

Во многих случаях в электропечах просто расплавляют один шлак (основные составляющие СаО и А12О3) и этим шла­ком обрабатывают сталь, выплавленнную в конвертере, мар­теновской или электропечи. Операция называется «обработка металла синтетическим шлаком» (СШ). Такой метод обработки металла был предложен в 1925-1927 гг. нашим соотечествен­ником инж. А.С.Точинским.

В тех случаях, когда по условиям производства нет воз­можности разместить оборудование для расплавления синте­тического шлака, используют метод обработки металла твер­дыми шлаковыми смесями (ТШС). Обычно в состав таких сме­сей входят СаО, CaF2, алюминиевая стружка и т.п. Эффек­тивность использования ТШС, естественно, ниже, чем жидких СШ. Основное требование к составам ТШС и СШ- минимум оксидов железа (для обеспечения максимального обессери­вающего эффекта).

При обработке металла синтетическим шлаком такого сос­тава (высокая основность и низкая окисленность) протекают следующие процессы:

1. Десульфурация. Обычно после обработки шлаком содер­жание серы в металле снижается до 0,002—0,010 %.

2. Раскисление. Окисленность металла снижается (в полтора—два раза).

3.Удаления неметаллических включений. В тех случаях, когда межфазное натяжение на границе капля синтетического шлака — неметаллическое включение δс.ш-вкл меньше, чем межфазное натяжение на границе металл – неметаллическое включение δМ-вкл т.е. при δс.ш-вкл

Дата добавления: 2018-04-05 ; просмотров: 838 ; Мы поможем в написании вашей работы!

Источник

Оцените статью
Разные способы