Прочность металла способ определения

Проверка металла на прочность. Как и чем проводят испытания? на сайте Недвио

Вопрос от читателя нашего портала: Проверка металла на прочность. Как и чем проводят испытания?

Ответ: Металл и металлоконструкции проверяют на прочность в специальных лабораториях и специальными машинами — экстензометрами. Это приборы, которые создают очень высокую нагрузку и позволяют измерить насколько деформируется образец металла при проведении его испытаний на растяжение и сжатие.

Эти испытания металла могут проводиться как неразрушающими, так и разрушающими образец методами. Сами же экстензометры могут быть разных видов:

  • пневматические экстензометры;
  • видео экстензометры;
  • лазерные экстензометры и др.

Все эти машины позволяют тщательно исследовать металл на прочность и определить его качественные характеристики. Для проверки огнестойкости металла дополнительно эти машины могут быть оснащены температурной камерой с нагревом до 350 ⁰С или печью с нагревом изделий до 1200 ⁰С. Все это позволяет определить прочность будущих металлоконструкций в строительстве, а также их потенциальную огнестойкость.

Как исследуют металл на прочность?

Как правило, тест металла на прочность заключается в постепенном растяжении образца экстензометром вплоть до его разрыва. Во время испытания регистрируется зависимость растягивающего усилия от приращения длины образца.

Помимо момента разрыва при помощи испытательной машины можно определить следующие свойства материала:

  • Предел прочности при растяжении Rm — это максимальное напряжение, полученное при испытании. Его рассчитывают относительно начальной площади поперечного сечения образца в Н/мм2;
  • Удлинение образца в процентах A% — это отношение изменения длины образца после проведенного испытания к его исходной длине;
  • Предел текучести Rp — это значение напряжения, при котором начинают проявляться необратимые микроскопические деформации в атомной структуре металла. Если материал не имеет четкого предела текучести, условный предел текучести определяется, когда образец уже остаточно деформирован на 0,2%;
  • Разрушающее напряжение Ru — так обозначают силу, при которой материал начинает разрушаться;
  • Предел пропорциональности RH — это максимальное напряжение, при котором деформация изделия пропорциональна напряжению, которое ее вызывает;
  • Предел упругости Rsp — это напряжение, после которого материал уже не возвращается к исходным размерам. За условный предел упругости Rsp принимается сила, при приложении которой, после разгрузки материала, деформация составляет 0,05% для испытаний на растяжение и 0,01% для испытаний на сжатие.

Разрешение на проведение таких испытаний металла выдается только аккредитованным организациям, имеющим обученный штат сотрудников и специальные лаборатории для тестов. Если вас интересует насколько прочный металл вам предлагают для строительства вашего дома рекомендуем обратиться в Центр Строительного Контроля.

В чем отличие разрушающих и неразрушающих методов?

В первом случае образец испытывают вплоть до его разрушения и непригодности к дальнейшим тестам. Неразрушающие методы исследований металла позволяют полностью использовать исходный образец, при этом не повредить его состав.

В большинстве случаев при работе с металлическими сплавами используют оба метода — просто разделяют исходный образец на составляющие, а затем проводят его испытания и анализы, а также выполняют некоторые измерения и вычисления для полного определения состава.

Основными методами неразрушающего исследования прочности металла являются:

  1. визуальный осмотр;
  2. контроль проникновения краски;
  3. тест магнитных частиц;
  4. радиографический контроль;
  5. ультразвуковой контроль;
  6. испытание на герметичность;
  7. испытание на вихревые токи;
  8. испытание на электромагнитное поле в дальней зоне;
  9. и ультразвуковое испытание на большом расстоянии.
Читайте также:  Способы пополнить счет карты

Основными разрушающими методами испытания металлов являются:

  1. испытание на изгиб;
  2. испытание на удар (тест Шарпи и испытание изодом);
  3. испытание на твердость;
  4. испытание на растяжение;
  5. испытание на усталость;
  6. испытание на коррозионную стойкость;
  7. и испытание на износ.

После идентификации компоненты можно протестировать и сопоставить с известными сплавами. В этом случае исходный образец при проведении испытаний уничтожается.

Не забудьте добавить сайт Недвио в Закладки. Рассказываем о строительстве, ремонте, загородной недвижимости интересно, с пользой и понятным языком.

Источник

Электронная библиотека

Металлам присущи высокая пластичность, тепло- и электропро­водность. Они имеют характерный металлический блеск.

Свойствами металлов обладают около 80 элементов периодиче­ской системы Д.И. Менделеева. Для металлов, а также для метал­лических сплавов, особенно конструкционных, большое значение имеют механические свойства, основными из которых являются прочность, пластичность, твердость и ударная вязкость.

Под действием внешней нагрузки в твердом теле возникают на­пряжение и деформация. Напряжение это нагрузка (сила), отнесенная к первоначальной площади поперечного сече­ния образца.

Деформация – это изменение формы и размеров твердого тела под действием внешних сил или в результате физических процессов, возникающих в теле при фазовых превращениях, усадке и т.п. Де­формация может быть упругая (исчезает после снятия нагрузки) и пластическая (сохраняется после снятия нагрузки). При все возрас­тающей нагрузке упругая деформация, как правило, переходит в пла­стическую, и далее образец разрушается.

В зависимости от способа приложения нагрузки методы испытания механических свойств ме­таллов, сплавов и других материалов делятся на статические, динамические и знакопеременные.

Прочность – способность металлов оказывать сопротивление де­формации или разрушению статическим, динамическим или знако­переменным нагрузкам. Прочность металлов при статических нагрузках испытывают на растяжение, сжатие, изгиб и кручение. Испытание на разрыв является обязательным. Прочность при динамических нагрузках оценивают удельной ударной вязкостью, а при знакопеременных нагрузках – усталостной прочностью.

Для определения прочности, упругости и пластичности металлы в виде образцов круглой или плоской формы испытывают на статическое растяжение. Испытания проводят на разрывных машинах. В результате испытаний получают диаграмму растяжения (рис. 3.1). По оси абсцисс этой диаграммы откладывают значения деформации, а по оси ординат – значения напряжения, приложенного к образцу.

Из графика видно, что сколь бы ни было мало приложенное напряжение, оно вызывает деформацию, причем начальные деформации являются всегда упругими и величина их находится в прямой зависимости от напряжения. На кривой, приведенной на диаграмме (рис. 3.1), упругая деформация характеризуется линией ОА и ее продолжением.

Рис. 3.1. Кривая деформации

Выше точки А нарушается пропорциональность между напряжением и деформацией. Напряжение вызывает уже не только упругую, но и остаточную, пластическую деформацию. Величина ее равна горизонтальному отрезку от штриховой линии до сплошной кривой.

При упругом деформировании под действием внешней силы изменяется расстояние между атомами в кристаллической решетке. Снятие нагрузки устраняет причину, вызвавшую изменение межатомного расстояния, атомы становятся на прежние места и деформация исчезает.

Пластическое деформирование представляет собой совершенно другой, значительно более сложный процесс. При пластическом деформировании одна часть кристалла перемещается по отношению к другой. Если нагрузку снять, то перемещенная часть кристалла не возвратится на старое место; деформация сохранится. Эти сдвиги обнаруживаются при микроструктурном исследовании. Кроме того, пластическое деформирование сопровождается дроблением блоков мозаики внутри зерен, а при значительных степенях деформации наблюдается также заметное изменение форм зерен и их расположения в пространстве, причем между зернами (иногда и внутри зерен) возникают пустоты (поры).

Читайте также:  Праймер elpaza способ применения

Представленная зависимость ОАВ (см. рис. 3.1) между приложенным извне напряжением (σ) и вызванной им относительной деформацией (ε) характеризует механические свойства металлов.

· наклон прямой ОА показывает жесткость металла, или характеристику того, как нагрузка, приложенная извне, изменяет межатомные расстояния, что в первом приближении характеризует силы межатомного притяжения;

· тангенс угла наклона прямой ОА пропорционален модулю упругости (Е), который численно равен частному от деления напряжения на относительную упругую деформацию:

· напряжение, которое называется пределом пропорциональности (σпц), соответствует моменту появления пластической деформации. Чем точнее метод измерения деформации, тем ниже лежит точка А;

· в технических измерениях принята характеристика, именуемая пределом текучести (σ0,2). Это напряжение, вызывающее остаточную деформацию, равную 0,2 % от длины или другого размера образца, изделия;

· максимальное напряжение (σв) соответствует максимальному напряжению, достигнутому при растяжении, и называется временным сопротивлением или пределом прочности.

Еще одной характеристикой материала является величина пластической деформации, предшествующая разрушению и определяемая как относительное изменение длины (или поперечного сечения) – так называемое относительное удлинение (δ) или относительное сужение (ψ), они характеризуют пластичность металла. Площадь под кривой ОАВ пропорциональна работе, которую надо затратить, чтобы разрушить металл. Этот показатель, определяемый различными способами (главным образом путем удара по надрезанному образцу), характеризует вязкость металла.

При растяжении образца до разрушения фиксируются графически (рис. 3.2) зависимости между приложенным усилием и удлинением образца, в результате этого получают так называемые диаграммы деформации.

Рис. 3.2. Диаграмма «усилие (напряжение) – удлинение»

Деформация образца при нагружении сплава сначала является макроупругой, а затем постепенно и в разных зернах при неодинаковой нагрузке переходит в пластическую, происходящую путем сдвигов по дислокационному механизму. Накопление дислокаций в результате деформации ведет к упрочнению металла, но при значительной их плотности, особенно в отдельных участках, возникают очаги разрушения, приводящие, в конечном счете, к полному разрушению образца в целом.

Прочность при испытании на растяжение оценивают следующими характеристиками:

1) пределом прочности на разрыв;

2) пределом пропорциональности;

3) пределом текучести;

4) пределом упругости;

5) модулем упругости;

6) пределом текучести;

7) относительным удлинением;

8) относительным равномерным удлинением;

9) относительным сужением после разрыва.

Предел прочности на разрыв (предел прочности или временное сопротивление разрыву) σв, – это напряжение, отвечающее наибольшей нагрузке РВ предшествующей разрушению образца:

Эта характеристика является обязательной для металлов.

Предел пропорциональности (σпц) – это условное напряжение Рпц, при котором начинается отклонение от пропорциональной зависимости мости между деформацией и нагрузкой. Он равен:

Значения σпц измеряют в кгс/мм 2 или в МПа.

Предел текучести (σт) – это напряжение (Рт) при котором обра­зец деформируется (течет) без заметного увеличения нагрузки. Вычисляется по формуле:

Читайте также:  Способы введения контрастных веществ

Предел упругости (σ0,05) – напряжение, при котором остаточное удлинение достигает 0,05 % длины участка рабочей части образца, равного базе тензометра. Предел упругости σ0,05 вычисляют по формуле:

Модуль упругости (Е) отношение приращения напряжения к соответствующему приращению удлинения в пределах упругой деформации. Он равен:

где ∆Р – приращение нагрузки; l0 – начальная расчетная длина образца; lср – среднее приращение удлинения; F0 начальная площадь поперечного сечения.

Предел текучести (условный) – напряжение при котором остаточное удлинение достигает 0,2 % длины участка образца на его рабочей части, удлинение которого принимается в расчет при определении указанной характеристики.

Вычисляется по формуле:

Условный предел текучести определяют только при отсутствии на диаграмме растяжения площадки текучести.

Относительное удлинение (после разрыва) – одна из характеристик пластичности материалов, равная отношению приращения расчетной длины образца после разрушения (lк) к начальной расчетной длине (l0) в процентах:

Относительное равномерное удлинение р) – отношение приращения длины участков в рабочей части образца после разрыва к длине до испытания, выраженное в процентах.

Относительное сужение после разрыва (ψ), как и относительное удлинение – характеристика пластичности материала. Определяется как отношение разности F0 и минимальной (Fк) площади поперечного сечения образца после разрушения к начальной площади поперечного сечения (F0), выраженное в процентах:

Упругость – свойство металлов восстанавливать свою прежнюю форму после снятия внешних сил, вызывающих деформацию. Упру­гость – свойство, обратное пластичности.

Очень часто для определения прочности пользуются простым, не разрушающим изделие (образец), упрощенным методом – измерением твердости.

Под твердостью материала понимается сопротивление проникновению в него постороннего тела, т.е., по сути дела, твердость тоже характеризует сопротивление деформации. Существует много методов определения твердости. Наиболее распространенным является метод Бринелля (рис. 3.3, а), когда в испытуемое тело под действием силы Р внедряется шарик диаметром D. Число твердости по Бринеллю (НВ) есть нагрузка (Р), деленная на площадь сферической поверхности отпечатка (диаметром d).

Рис. 3.3. Испытание на твердость:

а – по Бринеллю; б – по Роквеллу; в – по Виккерсу

При измерении твердости методом Виккерса (рис. 3.3, б) вдавливается алмазная пирамида. Измерив диагональ отпечатка (d), судят о твердости (HV) материала.

При измерении твердости методом Роквелла (рис. 3.3, в) индентором служит алмазный конус (иногда маленький стальной шарик). Число твердости – это значение, обратное глубине вдавливания (h). Имеются три шкалы: А, В, С (табл. 3.1).

Методы Бринелля и Роквелла по шкале B применяют для мягких материалов, а метод Роквелла по шкале C – для твердых, а метод Роквелла по шкале A и метод Виккерса – для тонких слоев (листов). Описанные методы измерения твердости характеризуют среднюю твердость сплава. Для того чтобы определить твердость отдельных структурных составляющих сплава, надо резко локализовать деформацию, вдавливать алмазную пирамиду на определенное место, найденное на шлифе при увеличении в 100 – 400 раз под очень небольшой нагрузкой (от 1 до 100 гс) с последующим измерением под микроскопом диагонали отпечатка. Полученная характеристика (Н) называется микротвердостью, и характеризует твердость определенной структурной составляющей.

Таблица 3.1 Условия испытания при измерении твердости методом Роквелла

При испытании алмазным конусом и нагрузке Р = 150 кгс

Источник

Оцените статью
Разные способы