Приведите примеры изменения внутренней энергии тела способом теплопроводности

Приведите примеры изменения внутренней энергии тела способом теплопроводности

Внутреннюю энергию тела можно изменить:

1) теплопередачей (теплопроводностью, конвекцией и излучением);

2) совершением механической работы над телом (трение, удар, сжатие и др.).

Энергия тела, которую оно получает или отдаёт при обмене теплом с другими телами (без совершения работы), называют количеством теплоты.

$$ = \Delta U$$ — количество теплоты. (8)

Рассмотрим эти процессы более подробно.

1. Виды теплопередачи

А)

явление передачи теплоты (энергии) от одной части тела (более нагретой) к другой (менее нагретой).

Передача теплоты осуществляется в основном за счёт колебательного движения и столкновения отдельных молекул. При этом при столкновениях некоторая доля кинетической энергии молекул от одной (более нагретой) части тела передаётся молекулам другой (менее нагретой) его части. Важно заметить, что при теплопроводности само вещество не перемещается, а теплопередача всегда идёт в определённом направлении: внутренняя энергия горячего тела уменьшается, а внутренняя энергия холодного тела увеличивается.

В твёрдых металлических телах теплопроводность осуществляется преимущественно за счёт движущихся особым образом свободных электронов (в металлах также осуществляется перенос тепла колеблющимися атомами, но их вклад сравнительно небольшой).

Благодаря непрерывному взаимодействию соседствующих молекул, теплопроводность в твёрдых телах и жидкостях происходит заметно быстрее, чем в газах.

Интенсивность теплопроводности между телами зависит от разности их температур, площади поверхности, через которую происходит теплопередача, а также от свойств вещества, расположенного между телами.

В обычных условиях для расчёта количества теплоты `Q`, передаваемого через слой вещества путём теплопроводности, пользуются следующим соотношением:

Здесь $$ k$$ – коэффициент теплопроводности вещества слоя,
$$ S$$ – площадь поверхности, через которую происходит теплопередача (см. рис 3),
$$ h$$ – толщина слоя вещества,
$$ t$$ – время наблюдения,
$$ \Delta T=_<1>—_ <2>$$ — разность температур между границами слоя $$ (_<1>>_<2>)$$.

Например, тепловая энергия уходит из комнаты через стену на улицу.

$$ S$$ – площадь поверхности стены,

  • $$ h$$ – толщина слоя вещества, составляющего стену.
  • $$ \Delta T$$ – разность температур между комнатой $$ \left(_<1>\right)$$ и улицей $$ \left(_<2>\right)$$;

$$ k$$ – коэффициент теплопроводности вещества стены.

Следует отметить, что значения коэффициентов теплопроводности различных веществ отличаются столь сильно, что некоторые вещества применяют как эффективные теплопроводники (металлы, термомастика), а другие, наоборот, как теплоизоляторы (кирпич, дерево, пенопласт).

Б) В поле силы тяжести ещё одним механизмом теплопередачи может служить конвекция.

называют процесс перемешивания вещества, осуществляемый силой Архимеда, вследствии разности температур.

Конвекция может быть обнаружена в газах, жидкостях или сыпучих материалах.

Например, в кастрюле (см. рисунок 4) нагреваемая снизу вода расширяется, плотность её уменьшается. Сила Архимеда, действующая на небольшой фрагмент прогретой воды, поднимает её вверх. На поверхности прогретая вода остывает, смешиваясь с более холодной водой, испаряясь и т. п. Вследствие чего вода сжимается, становится более плотной, и тонет. Возникает конвективная ячейка.

На практике часто встречается принудительная конвекция, осуществляемая насосами или специальными перемешивающими механизмами.

В) Все тела, температура которых отлична от абсолютного нуля, излучают электромагнитные волны, которые переносят энергию. При комнатной температуре это в основном инфракрасное излучение. Так происходит лучистый теплообмен, или теплопередача посредством теплового излучения.

Из этого факта вытекает, что энергией в форме излучения обмениваются практически все окружающие нас тела. Этот процесс также приводит к выравниванию температур тел, участвующих в теплообмене.

Согласно теории равновесного теплового излучения интенсивность $$ I$$ излучения так называемого абсолютно чёрного тела пропорциональна четвёртой степени абсолютной температуры $$ T$$ тела:

$$I=\sigma ·^<4>$$ — (закон Стефана—Больцмана). (10)

Где `sigma=5,67*10^(-8)` `»Вт»//»м»^2«»К»^4` — постоянная Стефана-Больцмана.

(Подробно речь об этом пойдёт в разделе «Основы квантовой физики» в 11 классе.)

В замкнутой системе теплообмен должен привести к установлению теплового равновесия. Теперь понятию «замкнутой системы» можно придать более отчётливые очертания: если границы некоторой области пространства имеют очень малый коэффициент теплопроводности (граница – слой теплоизолятора) и теплопередача через него не проходит, то содержащаяся внутри области пространства энергия изменяться не может и будет сохраняться.

2. Работа и изменение внутренней энергии.
Работа газа при расширении и сжатии

Для изменения внутренней энергии тела необходимо изменить кинетическую или потенциальную энергию его молекул. Этого можно добиться, не только при теплопередаче, но и деформируя тело. При упругой деформации изменяется расположение молекул или атомов внутри тела, приводящее к изменению сил взаимодействия (а значит, и потенциальной энергии взаимодействия), а при неупругой изменяются и амплитуды колебаний молекул или атомов, что изменяет кинетическую энергию молекул или атомов.

При ударе молотком по свинцовой пластине молоток заметно деформирует поверхность свинца (рис. 5). Атомы поверхностных слоёв начинают двигаться быстрее, внутренняя энергия пластины увеличивается.

Стоя на улице в морозную погоду и потирая руки, мы совершаем работу, что также приводит к увеличению внутренней энергии. Если сила трения возникла из-за взаимодействия шероховатостей, то при прохождении одной шероховатости мимо другой возникают колебания частей тела. Энергия колебаний превращается в тепло. Тот же процесс происходит и при разрывах шероховатостей.

Если работу совершает газ, закрытый в цилиндре и поршень будет перемещаться из положения `1` в положение `2` (рис. 6), то работа равна

Здесь $$ F$$ – сила, действующая на поршень со стороны газа,

  • $$ p$$ – давление газа,
  • $$ S$$ – площадь поверхности поршня,

$$ \Delta V$$ – изменение объёма газа.

В некоторых случаях для расчёта работы газа в тепловом процессе удобно воспользоваться графическим методом . Суть его можно представить следующим образом. Допустим, что газ изобарно расширяется от начального объёма $$ _<1>$$ до конечного объёма $$ _<2>$$. На $$ pV$$ -диаграмме график процесса представляет собой отрезок прямой линии (см. рис. 7). Сравним полученное выражение для расчёта работы $$ ^<\text<'>>$$ газа (см. выше) с «площадью» заштрихованного прямоугольника под графиком изобары $$ <>^<">S< >^<">=p(_<2>—_<1>)$$.

Нетрудно убедиться, что $$ <>^<">S< >^<">=^<\text<'>>$$, т. е. работа газа при расширении от объёма $$ _<1>$$ до объёма $$ _<2>$$ численно равна площади прямоугольника под графиком процесса на этом участке зависимости.

Если же процесс является более сложным (см. рис. 8), то и в этом случае графически работу можно найти как площадь фигуры под графиком процесса `1–2`.

Докажем это, рассмотрев переход газа из состояния 1 в состояние 2 не по кривой, а по ломаной, состоящей из $$ N$$ отрезков изохор и изобар. Работа на $$ i$$-ой изобаре (на рисунке $$ i=5$$) равна $$ _=

_·\Delta _$$. Суммируя площади под всеми изобарами, получим площадь фигуры под ломаной, которую можно приближённо считать равной работе газа при расширении:

Эту работу можно вычислить точнее, если увеличить число изобар и изохор ломаной (увеличить $$ N$$ и уменьшить $$ \Delta _$$). Площадь под ломаной при этом возрастёт,

так как к площади заштрихованной фигуры добавятся новые площади. Если число изобар и изохор устремить к бесконечности так, чтобы длина отрезков любой изобары и изохоры неограниченно уменьшалась, то ломаная линия совпадёт с кривой. Это и доказывает утверждение о том, что графически работу газа можно вычислить, найдя площадь фигуры под графиком процесса. Аналогично подсчитывают работу газа при его сжатии (уменьшении объёма). Необходимо только помнить, что работа газа в этом случае отрицательна.

При разбиении фигуры, образованной графиком процесса, изохорами и осью объёмов, на бесконечно малые элементы, изменение объёма записывается как $$ dV$$ (рис. 9). В этом случае малый элемент общей работы (элементарную работу) можно найти как $$ dA=p·dV$$, а всю работу получим суммированием всех элементарных работ на участке расширения:

Работа газа численно равна площади фигуры под графиком $$ p\left(V\right)$$.

Если идеальный газ находится в теплоизолированном сосуде (стенки сосуда не пропускают тепло), то работа внешней силы, совершённая над ним, равна изменению кинетически энергий молекул газа, т. е. равна изменению его внутренней энергии:

В рамках молекулярно-кинетической теории этот факт можно пояснить следующим образом. При столкновении молекулы с движущимся навстречу ей массивным поршнем перпендикулярная к поршню составляющая скорости молекулы увеличится на удвоенную скорость поршня.

Источник

Урок на тему: «Способы изменения внутренней энергии тела. Теплопроводность.»

Выбранный для просмотра документ 02-68.docx

Физика 8 класс Волик Н.Н.

Тема: Способы изменения внутренней энергии тела. Теплопроводность.

Цели (ожидаемый результат) :

сформировать понятия теплопередачи и изменения внутренней энергии путём совершения механической работы ;

отработка и закрепление умений учащихся применять свои знания для объяснения конкретных явлений .

развивать интерес к физике, мотивировать необходимость изучения тепловых явлений, раскрывать на интересных и важных примерах их широкое проявление в природе, показывать применение знаний о тепловых явлениях в быту и технике ;

развитие умений применять полученные знания при решении расчетных и качественных задач ;

развитие логического мышления .

демонстрируют коммуникативные навыки;

понимают значимость умственного труда.

Тип урока : урок изучения нового материала.

Методы урока : словесный, наглядный.

Оборудование : термометр, цилиндр металлический (заранее нагретый)

УМК : презентация «Изменение внутренней энергии тела».

Приветствует учащихся, создает доброжелательный настрой

Актуализация опорных знаний

М ы продолжаем изучать вопросы тепловых явлений. Сегодня рассматриваем способы изменения внутренней энергии. А прежде чем мы начнем говорить о способах изменения внутренней энергии, давайте вспомним материал предыдущего урока:

Физический диктант (заполнить пропуски): (слайд)

1. Нас окружают физические…

2. Они состоят из…

3. … движутся непрерывно.

4. Кинетическая энергия движущихся молекул и потенциальная энергия их взаимодействия образуют… энергию.

5. О б изменении внутренней энергии тела мы судим по…

Проверим ваши ответы (учащиеся обменивают своими ответами в парах и осуществляют взаимопроверку).

Пять правильных ответов это «5», четыре правильных ответа- «4» и так далее.

1. Нас окружают физические тела

2. Они состоят из молекул.

3. Молекулы движутся непрерывно.

4. Кинетическая энергия движущихся молекул и потенциальная энергия их взаимодействия образуют внутреннюю эн ергию.

5. О б изменении внутренней энергии тела мы судим по изменению температуры тела и деформации.

Все тела состоят из молекул, которые непрерывно движутся и взаимодействуют друг с другом. Они обладают одновременно кинетической и потенциальной энергией.
Эти энергии и составляют внутреннюю энергию тела.

Таким образом, внутренняя энергия — это энергия движения и взаимодействия частиц, из которых состоит тело.

Сообщение темы и целей урока

Поговорим подробнее о способах изменения внутренней энергии тела. Запишите тему урока. Способы изменения внутренней энергии тела. Теплопроводность.

Изучение нового материала

Объяснение нового материала с помощью презентации.

Внутренняя энергия не является величиной постоянной.

Если температура тела увеличивается, увеличивается и внутренняя энергия тела. Это означает, что молекулы этого тела начинают быстрее двигаться, чаще взаимодействовать друг с другом, и, соответственно расстояние между частицами увеличивается. Следовательно, энергия этого тела тоже увеличивается.

Если же температура понижается, тело остывает, то это означает, что молекулы начинают двигаться медленнее, их кинетическая энергия и расстояние между ними уменьшается, и, следовательно, энергия тела тоже убывает.

Можно сказать, что температура является главной характеристикой внутренней энергии тела.

Итак, от каких величин зависит внутренняя энергия тела?

Когда мы говорим об изменении внутренней энергии тела, то необходимо отметить, что не сразу сложилась теория, связывающая внутреннюю энергию и движение частиц. Почти до конца 19 века считалось, что существует так называемая субстанция – тепла, которая, втекая в тело, увеличивает его внутреннюю энергию, температуру; течением этой жидкости считалась его внутренняя энергия. А если тело остывает, то это тепло вытекает из тела, соответственно, внутренняя энергия его уменьшается.

Демонстрация: опыт по сгибанию и разгибанию медной проволоки. Место сгиба быстро становится теплым.

— Почему проволока в месте сгиба нагревается?

Обсуждая ответ на поставленный вопрос, учащиеся приходят к выводу, что, сгибая и разгибая кусок проволоки, мы совершаем механическую работу. Так как температура сгиба увеличилась, то увеличилась и средняя кинетическая энергия молекул, а значит и внутренняя энергия. Следовательно, механическая работа превратилась во внутреннюю энергию.

Рассмотрим опыт, описанный в учебнике на стр.8 (рис.4). (слайд)

Что мы совершали, натирая трубку шнуром? ( Механическую работу ). Как при этом изменилась внутренняя энергия жидкости внутри трубки? ( Увеличилась ). За счет чего увеличилась внутренняя энергия пара? ( За счет совершения механической работы при натирании трубки верёвкой ).

Этот способ увеличения внутренней энергии тела при трении был известен людям с глубокой древности. Именно таким способом люди добывали огонь.

Сделаем общий вывод: как можно увеличить внутреннюю энергию тела? ( Совершая над ним механическую работу ).

В своей жизненной практике вы также не раз сталкивались с увеличением внутренней энергии тела при совершении над ним механической работы. Работая в мастерских, например, обтачивая детали напильником, что вы замечали? ( Детали нагревались ).

Если мы будем совершать работу, то тем самым будем изменять энергию тела.

То же самое можно сказать о внутренней энергии: если мы будем совершать работу над телом какими -либо внешними силами, то соответственно, внутренняя энергия этого тела будет изменяться. Если само тело будет совершать работу, например, газ, расширяясь, то будет меняться внутренняя энергия самого газа.

Первые опыты по изменению внутренней энергии провел английский инженер и физик Румфорт, который в 18 веке при изготовлении пушек занимался сверлением ствола. Когда происходило сверление, Румфорт заметил, что и сверло, и сам ствол очень сильно нагреваются. В результате эксперимента он убедился, что при движении-вращении сверла можно нагреть даже воду, т.е. на вершине сверла укрепляли ведро с водой, которое в результате движения сверла, закипало, выделялась огромная энергия. Это доказывало, что внутренняя энергия тела может быть изменена при помощи совершения работы.

В технике, промышленности, повседневной практике мы постоянно встречаемся с изменением внутренней энергии тела при совершении работы: нагревание тел при ковке, при ударе; совершение работы сжатым воздухом или паром и др. (слайд)

Демонстрация: Проведём еще один опыт. В стакан с водой, имеющей температуру 20 С опустим цилиндр с температурой 100 С. Через некоторое время температура воды станет равна 60 С. Но и температура цилиндра также станет 60 С. За счёт чего повышается температура воды в стакане? ( Цилиндр передаёт часть тепла воде. При этом температура (внутренняя энергия) воды становится выше, а температура (внутренняя энергия) цилиндра уменьшается ). Такое явление, когда одно тело отдает энергию, а другое принимает, называется теплообменом. При теплообмене температура взаимодействующих тел становятся одинаковой. (слайд)

Совершается ли работа над телом при теплообмене? ( Нет ). Процесс изменения внутренней энергии без совершения работы над телом или самим телом называется теплопередачей.

Изменение внутренней энергии способом теплопередачи: нагревание чайника на плите, или, если вы вдруг опустили ложку чайную в стакан с чаем, то увидите, что эта ложка нагревается, т.е. как происходит этот нагрев, без совершения работы.

Внутренняя энергия тела изменяет свою энергию и за счет теплопередачи, и за счет совершения работы.

Внутренняя энергия изменяется при помощи работы и теплопередачи. Необходимо отметить, что теплопередача может происходить тремя способами, это:

1) Процесс конвекции;

3) Процесс теплопроводности.

Внутреннюю энергию можно изменить двумя способами.

Об этом мы будем говорить на последующих уроках.

Раз, два – встать пора,

Три, четыре – руки шире,

Пять, шесть – тихо сесть,

Семь, восемь – лень отбросим.

Закрепление изученного материала

Вопрос 1. Если кусок алюминиевой проволоки расклепать на наковальне или быстро изгибать в одном и том же месте то в одну, то в другую сторону, то это место сильно нагревается. Объясните явление.

Ответ: Над проволокой совершается механическая работа. Механическая энергия превращается во внутреннюю.

Вопрос №2 . Чем объясняется сильный нагрев покрышек автомобиля во время длительной езды?

Ответ. Покрышки нагреваются а счёт работы трения при частичном проскальзывании из по полотну дороги, и за счёт работы деформации покрышки при качении.

Вопрос №3 . Когда автомобиль расходует больше горючего: при езде без остановки или с остановками? Почему?

Ответ: При остановке кинетическая энергия автомобиля превращается во внутреннюю энергию тормозных колодок. Чтобы каждый раз после остановки приобрести необходимую скорость, в двигателе должно быть израсходовано дополнительно некоторое количество горючего.

Итак, внутренняя энергия тела – это суммарная потенциальная и кинетическая энергия всех молекул тела. Молекулы обладают потенциальной энергией, т.к. взаимодействуют друг с другом. Потенциальная энергия молекул зависит от расстояния между молекулами. Расстояние между молекулами можно изменить деформацией или нагреванием. При нагревании и охлаждении расстояние между молекулами изменяется не очень сильно. Значительно расстояние между молекулами изменяется при переходе вещества из одного агрегатного состояния в другое. Молекулы обладают кинетической энергией, т.к. находятся в непрерывном движении. Кинетическая энергия молекул зависит от скорости движения молекул. Скорость движения молекул зависит от температуры. Следовательно, внутренняя энергия тела изменяется при деформации и изменении температуры тела.

Внутреннюю энергию тела можно изменить двумя способами: совершая над телом механическую работу и способом теплопередачи. Теплопередача совершается несколькими способами.

Задает вопросы учащимся:

Все ли было понятно на уроке? Что вызвало трудности?

Почему при обработке детали напильником деталь и напильник нагреваются?

Каким способом и как изменяется внутренняя энергия продуктов, положенных в холодильник?

Молоток будет нагреваться, когда им забивают гвозди, а также когда он лежит на солнце.

Каким образом меняется внутренняя энергия молотка в каждом случае?

Как древние люди добывали огонь? Как сегодня в походных условиях получают огонь?

Каким образом происходит нагревание двигателя и его охлаждение при движении автомобиля?

Как вы работали на уроке? Как вы себя оцениваете?

Выставляет оценки за урок, с комментариями

Домашнее задание: прочитать параграф 3, 4 — выучить основные понятия, упр.1. стр.13.

Источник

Читайте также:  Лучшие способы избавиться от стресса
Оцените статью
Разные способы