Приведите пример аналогового способа представления звуковой информации

Приведите пример аналогового способа представления звуковой информации

Аналоговый и дискретный способы представления звука

Информация, в том числе графическая и звуковая, может быть представлена в аналоговой или дискретной форме.

При аналоговом представлении физическая величина принимает бесконечное множество значений, причем ее значения изменяются непрерывно.

При дискретном представлении физическая величина принимает конечное множество значений, причем ее величина изменяется скачкообразно.

Аналоговое и дискретное кодирование

Примером аналогового хранения звуковой информации является виниловая пластин­ка (звуковая дорожка изменяет свою форму непрерывно), а дискретного — аудиокомпакт-диск (звуковая дорожка которого содержит участки с различной отражающей способностью).

Восприятие звука человеком

Звуковые волны улавливаются слуховым органом и вызывают в нем раздражение, которое передается по нервной системе в головной мозг, создавая ощущение звука.

Колебания барабанной перепонки в свою очередь передаются во внутреннее ухо и раздражают слуховой нерв. Так образом человек воспринимает звук.

В аналоговой форме звук представляет собой волну, которая характеризуется:
    Высота звука определяется частотой колебаний вибрирующего тела.

Герц (Гц или Hz) — единица измерения частоты колебаний. 1 Гц= 1/с

Человеческое ухо может воспринимать звук с частотой от 20 колебаний в секунду (20 Герц, низкий звук) до 20 000 колебаний в секунду (20 КГц, высокий звук).

— аналоговый — непрерывный — звук

Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой.

Чем больше амплитуда сигнала, тем он громче для человека, чем больше частота сигнала, тем выше тон.

Кодирование звуковой информации

Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть превращен в последовательность электрических импульсов (двоичных нулей и единиц).

В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды.

Т.о. при двоичном кодировании непрерывного звукового сигнала он заменяется последовательностью дискретных уровней сигнала.

Рис. Временная дискретизация звука

Таким образом, непрерывная зависимость амплитуды сигнала от времени А(t) заменяется на дискретную последовательность уровней громкости.

На графике это выглядит как замена гладкой кривой на последовательность «ступенек»:

Каждой «ступеньке» присваивается значение уровня громкости звука, его код (1, 2, 3 и так далее).

Уровни громкости звука можно рассматривать как набор возможных состояний, соответственно, чем большее количество уровней громкости будет выделено в процессе кодирования, тем большее количество информации будет нести значение каждого уровня и тем более качественным будет звучание.

Преобразование аналоговой формы представления звука в дискретную происходит в процессе аналогово-цифрового преобразования (АЦП).

Преобразование дискретной формы представления звука в аналоговую происходит в процессе цифро-аналогового преобразования (ЦАП)

Качество кодирования звуковой информации зависит от:

1) частотой дискретизации, т.е. количества измерений уровня сигнала в единицу времени. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее процедура двоичного кодирования.

2) глубиной кодирования, т.е. количества уровней сигнала.

Современные звуковые карты обеспечивают 16-битную глубину кодирования звука. Количество различных уровней сигнала (состояний при данном кодировании) можно рассчитать по формуле: N = 2 i = 2 16 = 65536, где i — глубина звука.

Таким образом, современные звуковые карты могут обеспечить кодирование 65536 уровней сигнала. Каждому значению амплитуды звукового сигнала присваивается 16-битный код.

Количество измерений в секунду может лежать в диапазоне от 8000 до 48 000, то есть частота дискретизации аналогового звукового сигнала может принимать значения от 8 до 48 кГц. При частоте 8 кГц качество дискретизированного звукового сигнала соответствует качеству радиотрансляции, а при частоте 48 кГц — качеству звучания аудио-СD. Следует также учитывать, что возможны как моно-, так и стерео-режимы.

Можно оценить информационный объем стереоаудиофайла длительностью звучания 1 секунда при высоком качестве звука (16 битов, 48 кГц). Для этого количество битов, приходящихся на одну выборку, необходимо умножить на количество выборок в 1 секунду и умножить на 2 (стерео):

Решение: 16 бит • 48 000 • 2 = 1 536 000 бит = 192 000 байт = 187,5 Кбайт.

ЗАДАЧА 2.

Оценить информационный объем цифрового стерео звукового файла длительностью звучания 1 минута при среднем качестве звука (16 битов, 24 кГц).

Решение: 16 бит × 24 000 × 2 × 60 = 46 080 000 бит = 5 760 000 байт = 5 625 Кбайт ≈ 5,5 Мбайт

Стандартное приложение Звукозапись играет роль цифрового магнитофона и позволяет записывать звук, то есть дискретизировать звуковые сигналы, и сохранять их в звуковых файлах в формате WАV. Эта программа позволяет редактировать звуковые файлы, микшировать их (накладывать друг на друга), а также воспроизводить.

Качество двоичного кодирования изображения или звука определяется частотой дискретизации и глубиной кодирования.

Домашнее задание — решить задачи:

Источник

Аналоговый и дискретный способы представления изображений и звука

Аналоговый и дискретный способы представления изображений и звука

Человек способен воспринимать и хранить информацию в форме образов (зрительных, звуковых, осязательных, вку­совых и обонятельных).

Зрительные образы могут быть со­хранены в виде изображений (рисунков, фотографий и так далее), а звуковые — зафиксированы на пластинках, магнитных лентах, лазерных дисках и так далее.

Информация, в том числе графическая и звуковая, может быть представлена в аналоговой или дискретной форме.

При аналоговом представлении физическая величина при­нимает бесконечное множество значений, причем ее значе­ния изменяются непрерывно.

При дискретном представле­нии физическая величина принимает конечное множество значений, причем ее величина изменяется скачкообразно.

Приведем пример аналогового и дискретного представле­ния информации.

Положение тела на наклонной плоскости и на лестнице задается значениями координат X и Y. При движении тела по наклонной плоскости его координаты мо­гут принимать бесконечное множество непрерывно изменя­ющихся значений из определенного диапазона, а при движе­нии по лестнице — только определенный набор значений, причем меняющихся скачкообразно. Рис. 1 Аналоговое и

Примером аналогового представления графической инфор­мации может служить, например, живописное полотно, цвет которого изменяется непрерывно,

а дискретного — изображе­ние, напечатанное с помощью струйного принтера и состоя­щее из отдельных точек разного цвета.

Примером аналогового хранения звуковой информации является виниловая пластин­ка (звуковая дорожка изменяет свою форму непрерывно),

а дискретного — аудиокомпакт-диск (звуковая дорожка которо­го содержит участки с различной отражающей способностью).

Преобразование графической и звуковой информации из аналоговой формы в дискретную производится путем дискретизации, то есть разбиения непрерывного графического изображения и непрерывного (аналогового) звукового сигна­ла на отдельные элементы.

В процессе дискретизации произ­водится кодирование, то есть присвоение каждому элементу конкретного значения в форме кода.

Дискретизация — это преобразование непрерыв­ных изображений и звука в набор дискретных зна­чений в форме кодов.

Вопросы для размышления

1. Приведите примеры аналогового и дискретного способов представления графической и звуковой информации.

2. В чем состоит суть процесса дискретизации?

Двоичное кодирование графической информации

В процессе кодирова­ния изображения производится его пространственная диск­ретизация. Пространственную дискретизацию изображе­ния можно сравнить с построением изображения из мозаики (большого количества маленьких разноцветных стекол). Изображение разбивается на отдельные маленькие фрагменты (точки), причем каждому фрагменту присваива­ется значение его цвета, то есть код цвета (красный, зеле­ный, синий и так далее) Рис. 2 Пространственная дискретизация

Качество кодирования изображения зависит от двух па­раметров.

Во-первых, качество кодирования изображения тем выше, чем меньше размер точки и соответственно боль­шее количество точек составляет изображение.

Во-вторых, чем большее количество цветов, то есть боль­шее количество возможных состояний точки изображения, используется, тем более качественно кодируется изображение), (каждая точка несет большее количество информации). Совокупность используемых в наборе цветов образует палитру цветов.

Формирование растрового изображения.

Графическая ин­формация на экране монитора представляется в виде растро­вого изображения, которое формируется из определенного ко­личества строк, которые в свою очередь содержат определенное количество точек (пикселей).

Качество изображения определяется разрешающей спо­собностью монитора, т. е. количеством точек, из которых оно складывается.

Чем больше разрешающая способность, то есть чем больше количество строк растра и точек в стро­ке, тем выше качество изображения.

В современных персо­нальных компьютерах обычно используются три основные разрешающие способности экрана: 800 х 600, 1024 х 768 и 1280 х 1024 точки.

Рассмотрим формирование на экране монитора растрово­го изображения, состоящего из 600 строк по 800 точек в каждой строке (всего точек). В простейшем случае (черно-белое изображение без градаций серого цвета) каж­дая точка экрана может иметь одно из двух состояний — «черная» или «белая», то есть для хранения ее состояния необходим 1 бит.

Цветные изображения формируются в соответствии с двоичным кодом цвета каждой точки, хранящимся в видеопамяти (рис. 3).

Видеопамять

Двоичный код цвета точки

Рис. 3. Формирование растрового изображения

¿Цветные изображения могут иметь различную глубину цвета, которая задается количеством битов, используемым для кодирования цвета точки. Наиболее распространенными значениями глубины цвета являются 8, 16,24 или 32 бита

Качество двоичного кодирования изображения определяется разрешающей способностью экра­на и глубиной цвета.

Каждый цвет можно рассматривать как возможное состо­яние точки, тогда количество цветов, отображаемых на эк­ране монитора, может быть вычислено по формуле

Таблица 4. Глубина цвета и количество отображаемых цветов

Цветное изображение на экране монитора формируется за счет смешивания трех базовых цветов: красного, зеленого и синего. Такая цветовая модель называется RGB-моделью по первым буквам английских названий цветов (Red, Green, Blue).

Для получения богатой палитры цветов базовым цветам могут быть заданы различные интенсивности.

Например, при глубине цвета в 24 бита на каждый из цветов выделяется по 8 бит, то есть для каждого из цветов возможны N = 28= 256 уровней интенсивности, заданные двоичными кодами (от минимальной — до максимальной —) табл. 5

Таблица.5. Формирование цветов при глубине цвета 24 бита

Графический режим вывода изобра­жения на экран монитора определяется величиной разрешаю­щей способности и глубиной цвета.

Для того чтобы на экране монитора формировалось изображение, информация о каждой его точке (код цвета точки) должна храниться в видеопамяти компьютера.

Рассчитаем необходимый объем видеопамяти для одного из графических режимов, например, с разрешением 800 х 600 точек и глубиной цвета 24 бита на точку.

Всего точек на экране: 800 • 600 =

Необходимый объем видеопамяти:

24 бит • =бит = 1 байт =

= 1406,25 Кбайт = 1,37 Мбайт.

Аналогично рассчитывается необходимый объем видеопа­мяти для других графических режимов.

В Windows предусмотрена возможность выбора графиче­ского режима и настройки параметров видеосистемы компь­ютера, включающей монитор и видеоадаптер.

Установка графического режима

1. Щелкнуть по индикатору Экран на Панели задач, появится диалоговая панель Свойства: Экран. Выбрать вкладку Настрой­ка, которая информирует нас о марке установленных мо­нитора и видеоадаптера и предоставляет возможность установить графический ре­жим экрана (глубину цвета и разрешающую способность).

2. Щелкнуть по кнопке Допол­нительно, появится диало­говая панель, на которой вы­брать вкладку Адаптер. На вкладке имеется инфор­мация о фирме-производите­ле, марке видеоадаптера, объеме видеопамяти и др. С помощью раскрывающего­ся списка можно выбрать оп­тимальную частоту обновле­ния экрана.

Вопросы для размышления

1. В чем состоит суть метода пространственной дискретизации?

2. Объясните принцип формирования растрового изображения.

3. Какими параметрами задается графический режим, в котором
изображения выводятся на экран монитора?

Двоичное кодирование звуковой информации

Временная дискретизация звука.

¿ Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и ча­стотой. Чем больше амплитуда сигнала, тем он громче для человека, чем больше частота сигнала, тем выше тон.

Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть превращен в последователь­ность электрических импульсов (двоичных нулей и единиц).

В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация.

Непрерывная звуковая волна разбивается на отдельные маленькие вре­менные участки, причем для каждого такого участка уста­навливается определенная величина амплитуды.

Таким образом, непрерывная зависимость амплитуды сиг­нала от времени A(t) заменяется на дискретную последователь­ность уровней громкости. На графике это выглядит как заме­на гладкой » кривой на последовательность «ступенек» — рис. 6.

Каждой «ступеньке» присваивается значение уровня гром­кости звука, его код (1, 2, 3 и так далее). Уровни громкости звука можно рассматривать как набор возможных состояний, соответственно, чем большее количество уровней громкости будет выделено в процессе кодирования, тем большее количе­ство информации будет нести значение каждого уровня и тем более качественным будет звучание.

Современные звуковые карты обеспечивают 16-битную глубину кодирования звука. Количество различных уровней сигнала (состояний при данном кодировании) можно рассчи­тать по формуле

N = 2 i, = 216 = 65536, где i — глубина звука.

Таким образом, современные звуковые карты могут обеспе­чить кодирование 65536 уровней сигнала. Каждому значению амплитуды звукового сигнала присваивается 16-битный код.

При двоичном кодировании непрерывного звукового сиг­нала он заменяется последовательностью дискретных уров­ней сигнала.

Качество кодирования зависит от количества измерений уровня сигнала в единицу времени, то есть час­тоты дискретизации.

Чем большее количество измерений производится за 1 секунду (чем больше частота дискретиза­ции), тем точнее процедура двоичного кодирования/

Качество двоичного кодирования звука определя­ется глубиной кодирования и частотой дискретизации.

Количество измерений в секунду может лежать в диапа­зоне от 8000 до, то есть частота дискретизации ана­логового звукового сигнала может принимать значения от 8 до 48 кГц. При частоте 8 кГц качество дискретизированного звукового сигнала соответствует качеству радиотрансляции, а при частоте 48 кГц — качеству звучания аудио-CD. Следу­ет также учитывать, что возможны как моно-, так и стерео-режимы.

Можно оценить информационный объем стереоаудиофайла длительностью звучания 1 секунда при высоком качестве звука (16 битов, 48 кГц).

Для этого количество битов, при­ходящихся на одну выборку, необходимо умножить на ко­личество выборок в 1 секунду и умножить на 2 (стерео):

16 бит •• 2 = 1 бит = байт = = 187,5 Кбайт.

Стандартное приложение Звукозапись играет роль цифро­вого магнитофона и позволяет записывать звук, то есть ди-скретизировать звуковые сигналы, и сохранять их в звуко­вых файлах в формате WAV. Эта программа позволяет редактировать звуковые файлы, микшировать их (наклады­вать друг на друга), а также воспроизводить.

Вопросы для размышления

1. В чем состоит принцип двоичного кодирования звука?

2. От каких параметров зависит качество двоичного кодирования звука?

Источник

Читайте также:  Способ оценки качества цели проекта
Оцените статью
Разные способы