Пример способа формирования выборки

Схемы отбора в выборку

Схема отбора в выборку — это детальное описание того, какие данные и каким способом будут получены. Есть много схем для отбора в выборку, поэтому нужно выбрать для исследований такую, которая даст наиболее репрезентативные результаты. Репрезентативность выборки — это соответствие характеристик выборки характеристикам популяции.

В идеале лучше работать со всей генеральной совокупностью, но это занимает много времени и ресурсов. Поэтому можно исследовать только ее часть, что и называется выборкой. Затем исследуются элементы, которые попали в выборку. На основе полученных значений оцениваются неизвестные элементы выборки.

Основные принципы отбора в выборку

Идея состоит в том, чтобы перенести результаты на всю генеральную совокупность. Поэтому выборка должна быть репрезентативной. Другими словами она пропорциональна как подгруппам, так и всей совокупности, и не исключает каких-либо отдельных групп.

Выборка должна быть настолько большой, насколько это возможно, чтобы избежать ошибочных суждений. По сути выборкой может быть любое подмножество генеральной совокупности.

Если выборка недостаточно репрезентативна — исследование будет считаться предвзятым. Если она будет недостаточно большой — неточным.

Если правильно подобрать связь между выборкой и совокупностью, тогда можно сделать правильные заключения о природе всей совокупности. Лучше быть возможно правым, чем точно не правым.

Схемы отбора для вероятностных выборок

Вероятностные выборки подразумевают, что исследователь абсолютно уверен в связях выборки с генеральной совокупностью. Если же связи не прослеживаются или в наличии имеются не все элементы генеральной совокупности используется невероятностная выборка.

На основе жеребьевки

Схема отбора состоит в том, чтобы провести ряд испытаний без возвращения элемента в генеральную совокупность. Каждый элемент совокупности имеет одинаковые шансы попасть в выборку.

Из генеральной совокупности N случайным образом отбирается один элемент, вероятность попадания элемента в выборку равна 1/N. Затем из выборки N-1 выбирается второй элемент с вероятностью 1/(N-1) и так далее до n-го элемента с вероятностью 1/(N-n).

Источник

Пример способа формирования выборки

1.1.2. ВЫБОРОЧНЫЙ МЕТОД НАБЛЮДЕНИЯ.
СПОСОБЫ ФОРМИРОВАНИЯ ВЫБОРОЧНОЙ СОВОКУПНОСТИ

Применение выборочного метода наблюдения включает следующие этапы:

определение генеральной совокупности и единиц наблюдения, обладающих первичной информацией, необходимой для решения задач обследования;

создание основы выборки;

формирование выборочной совокупности путем отбора элементов основы;

распространение собранных по выборке данных на генеральную совокупность.

Последний этап зависит от примененного способа отбора элементов в выборку и используемой формулы оценивания характеристик генеральной совокупности по данным выборки.

В статистической практике выборки извлекаются из конечных списочных основ. Однако единица основы, единица отбора и единица наблюдения могут отличаться. Например, это обычная ситуация при обследованиях населения и сельскохозяйственного сектора.

При рассмотрении любой схемы извлечения выборки должны быть учтены два фактора:

а) использовалась или нет вероятностная процедура;

б) наличие или отсутствие объективности в действиях специалиста, формирующего выборку.

Смысл объективности ясен и однозначен: любой специалист, производящий отбор, получил бы ту же самую выборку, т.е. выборку с теми же самыми свойствами. Субъективность означает, что специалисту, производящему отбор, позволено опираться на собственное суждение или интуицию относительно того, что является «хорошей» выборкой.

Рассматривая каждый из этих факторов на двух уровнях, можно выделить четыре типа выборок:

Роль, которую
играет специалист, осуществляющий отбор

Процедура отбора

Вероятностная

Невероятностная

Объективная

Выборки, сформированные вероятностным (случайным) образом

Выборки, сформированные на основе направленного отбора

Субъективная

Выборки, сформированные квазислучайным образом

Выборки, сформированные на основе суждения эксперта

В статистической практике используются все четыре типа выборок. Однако обычно отдают предпочтение вероятностным (случайным) выборкам как наиболее объективным, поскольку имеется хорошо обоснованная теория, позволяющая понимать поведение таких выборок и оценивать их свойства (качество) отображения характеристик всей совокупности. Свойства и объективная ценность других выборок известны в меньшей мере.

Имеются два типа выборок, основывающихся на вероятностном способе отбора: выборки, отбираемые по объективным правилам вероятностного (случайного) отбора, и выборки, отбираемые, строго говоря, не по этим правилам (квазислучайные). Материалы сборника содержат значительное число примеров использования в статистической практике объективных вероятностных выборок. Одно из наиболее ценных качеств вероятностных выборок состоит в том, что можно оценить точность получаемых результатов по данным самой выборки.

В теории выборочных обследований рассматриваются выборки, извлеченные из совокупностей (основ выборки), содержащих некоторое конечное число единиц N . Эти единицы различимы между собой и число различных выборок объема n , которые могут быть извлечены из списка N единиц, равно числу сочетаний .

В выборочных статистических обследованиях в целях расчета параметров совокупности основное внимание направлено на изучение определенных свойств единиц, которые измеряются и фиксируются в процессе наблюдения для каждой единицы, включенной в выборку. Эти свойства называют признаками.

Хотя выборка используется для многих целей, обычно представляют интерес четыре характеристики совокупности:

среднее значение признака (например, среднее число занятых на одном предприятии);

суммарное значение признака (например, выпуск продукции предприятиями промышленности);

отношение двух суммарных или средних значений (например, отношение стоимости ликвидных активов к общей стоимости активов);

доля единиц в совокупности, относящихся к некоторой определенной группе (например, доля промышленных предприятий, оказывающих платные услуги населению) или обладающих определенным значением признака.

Главным вопросом методологии выборочного наблюдения является обеспечение приемлемого уровня ошибок получаемых значений характеристик совокупности, в том числе по требуемым разрезам, например, отраслям экономики, формам собственности и регионам России.

Полученные в результате выборочного наблюдения характеристики практически всегда несколько отличаются от характеристик генеральной совокупности. Эти отличия называются ошибками выборки (или репрезентативности) , которые могут быть систематическими или случайными.

Систематические ошибки имеют место в том случае, когда нарушен принцип случайности отбора и в выборку попали единицы, обладающие какими-либо свойствами, не характерными для всех единиц генеральной совокупности. Случайные ошибки обусловлены тем обстоятельством, что даже при тщательной организации выборка не может в точности воспроизвести генеральную совокупность. В отличие от ошибок систематических, случайные ошибки являются вполне допустимыми, если они малы и могут быть оценены статистически.

Для измерения ошибки выборки, а также сравнения двух оценок, т.е. выявления более эффективной оценки, используют средний квадрат ошибки оценки (СКО), который измеряет ошибку относительно оцениваемого параметра совокупности:

символ, заменяющий выражение «математическое ожидание величины»;

Читайте также:  От печени таблетки карсил способ применения

оценка некоторой характеристики совокупности , получаемая согласно некоторой схеме отбора и примененной формуле оценивания;

математическое ожидание — среднее значение, взятое по всем возможным выборкам;

смещение оценки;

дисперсия оценки.

Таким образом, СКО является критерием достоверности оценки, который характеризует величину отклонений от истинного значения характеристики совокупности .

Поскольку на практике трудно проследить, чтобы оценки не давали никаких смещений, для характеристики оценки используется понятие «точности», относящееся к величине отклонений от усредненного значения .

Степень точности оценки обычно характеризуется ее дисперсией, стандартной ошибкой, коэффициентом вариации (относительной стандартной ошибкой) и доверительным интервалом.

Точность какой-либо оценки, полученной по выборке, зависит от двух факторов: от способа, которым оценка вычисляется по данным выборки, и от способа формирования самой выборки.

В выборочных обследованиях способ оценивания называется состоятельным, если оценка становится в точности равной оцениваемому параметру для совокупности при n = N , т.е. когда выборку составляет вся совокупность. Очевидно, что при простом случайном отборе выборочное среднее и произведение представляют собой состоятельные оценки соответственно среднего и суммарного значений для совокупности.

В данном контексте способ оценивания называется несмещенным , если среднее значение оценки, взятое по всем возможным выборкам данного объема n , в точности равно истинному значению для совокупности, и это утверждение справедливо для любой конечной совокупности значений и для любого n . Например, при простом случайном отборе выборочное среднее — несмещенная оценка среднего значения признака, — несмещенная оценка суммарного значения Y для совокупности, где — среднее значение признака по выборке.

В теории и практике выборочных обследований часто приходится рассматривать смещенные оценки. Это обусловлено следующими причинами. Во-первых, в некоторых случаях, особенно при оценивании отношений двух величин, смещенные оценки дают более достоверные результаты, чем несмещенные. Во-вторых, даже в случае использования теоретически несмещенных оценок ошибки наблюдения и неполучение ответов от респондентов могут привести к смещениям в распространенных результатах.

Кратко опишем некоторые, наиболее часто используемые в статистической практике способы формирования вероятностной выборки.

Простой случайный отбор. Простым случайным отбором называется способ, при котором извлечение единиц из совокупности для обследования осуществляется методом жеребьевки или с использованием таблиц или генератора случайных чисел без деления этой совокупности на какие-либо классы или группы.

Простую случайную выборку получают, отбирая последовательно единицу за единицей. Единицы в совокупности нумеруются числами от 1 до N , после чего выбирается последовательность n случайных чисел, заключенных между 1 и N . Единицы совокупности, имеющие эти номера, составляют выборку. На каждом этапе отбора такой процесс обеспечивает для всех еще не выбранных номеров равную вероятность быть отобранными. Легко показать, что равную вероятность быть отобранными имеют все возможных выборок.

Уже отобранные номера исключаются из списка, иначе одна и та же единица могла бы попасть в выборку более одного раза. Поэтому такой отбор называется отбором без возвращения . Отбор с возвращением легко осуществим, но им, за исключением особых случаев, пользуются редко, поскольку нет особых оснований допускать, чтобы одна и та же единица встречалась в выборке дважды.

При простом случайном отборе для получения выводов о параметрах совокупности используют выборочное среднее в качестве оценки среднего значения признака совокупности, а дисперсию признака по выборке — для оценки дисперсии признака совокупности. Для простой случайной выборки усредненные выборочные средние и дисперсии точно равны среднему и дисперсии признака совокупности.

ФОРМУЛЫ ОЦЕНИВАНИЯ ПРИ ПРОСТОМ СЛУЧАЙНОМ ОТБОРЕ

Источник

Практические способы построения выборки в исследованиях и опросах

Elitarium.ru , 1 июля 2011г.

Предисловие редакции HT.ru:

Данная статья адресована, в первую очередь, маркетологам и социологам, которые занимаются проведением массовых опросов и исследований. Но нам бы хотелось, чтобы с этим материалом были знакомы наши hr-ы. Даже если Вы еще никогда не занимались проведением опросов в своей организации, поверьте, Вам предстоит когда-нибудь столкнуться с этой интереснейшей областью работы. И одной из первых проблем, которая встанет перед Вами, будет вопрос «Кого привлекать к опросу?». Скажем так, данная статья не даст простого и четкого ответа на этот, в действительности, непростой вопрос. Но, прочитав ее, Вы сможете по-новому, осмысленнее и более профессионально взглянуть на тот фронт работ, который представляет собой проведение опросов. Например, Вы сможете предугадать, чьи ответы Вы получите в случае, когда опрос в организации будут проходить «все желающие».

Автор статьи: Игopь Cтанислaвович Бepeзин, консультант по маркетинговым стратегиям, президент Гильдии мapкетoлoгов (г. Моcква).

Опрос и анкетирование являются ведущими, универсальными методами проведения социологических и маркетинговых исследований. Чаше всего, когда говорят о маркетинговом исследовании — сборе первичной информации, имеют в виду именно опрос или анкетирование, предполагающие прямое выяснение, непредвзятого мнения достаточно многочисленной группы респондентов.

Массовым считается опрос, в ходе которого путем личной беседы сотрудника исследовательской компании — интервьюера с носителями информации (респондентами), состоящей из нескольких десятков коротких вопросов, изучаются мнения нескольких сотен (тысяч) человек. Под анкетированием понимают безличную форму общения исследователей с носителями информации, при которой респонденты самостоятельно отвечают на вопросы анкеты, следуя содержащейся в ней инструкции и не вступая в непосредственный контакт с интервьюерами.

Конечной целью анкетирования и массового опроса является получение данных, характеризующих так называемую генеральную совокупность. Генеральная совокупность — это все представители какой-либо группы, носители какого-либо важного признака, например:

Для того чтобы опросить десятки или сотни тысяч, а тем более — миллионы человек (компаний), из которых может состоять генеральная совокупность, нужны сотни или даже тысячи интервьюеров. На проведение подобного исследования могут понадобиться десятки, если не сотни миллионов долларов и не менее полугода напряженной работы. Такое возможно только при переписи населения (проводящейся не чаще одного раза в 10 лет).

Однако в маркетинге этого и не требуется. Достаточно того, чтобы относительно небольшая выборка (от нескольких сотен до нескольких тысяч представителей) репрезентировала (выразила) мнение генеральной совокупности. Как такое возможно? На каком основании можно распространять данные, полученные от небольшой группы людей, на существенно (в десятки и сотни раз) большую группу? На основании гипотезы о том, что на поведение, знания, отношение потребителей к компании, товару, услуге или отдельных их компонентов оказывают влияние социально-демографические характеристики самих потребителей.

Иными словами, большинство представителей четко определенной социально-демографический группы будут сходным образом реагировать на внешние, в данном случае — рыночные стимулы: товар, цену, упаковку, рекламу и т. д. и т. п. И нет никакой необходимости опрашивать всех представителей этой группы, поскольку ее мнение (с допустимой погрешностью) может представить (репрезентировать) небольшая выборка из ее представителей.

Читайте также:  Незаконные способы ухода от уплаты налогов

Способы построения выборки

Существуют две группы методов построения выборки , в той или иной степени реализующих репрезентацию мнений и позиций генеральной совокупности: вероятностные и детерминированные.

Первая группа методов (вероятностные) базируется на использовании теории вероятности. В основе ее применения лежит постулат, что репрезентация будет достигнута в случае, если каждой единице генеральной совокупности обеспечено равновероятное попадание в выборку. Например, если генеральной совокупностью является все взрослое (16-85 лет) население города (200 тыс. человек), то каждому жителю должна быть обеспечена вероятность стать участником исследования(попасть в выборку), равная 1 / 200 000. В противном случае выборка будет не случайной, а смещенной, т. е. менее репрезентативной.

Реализовать это можно в случае, если все элементы генеральной совокупности могут быть тем или иным образом пронумерованы, а затем эти номера будут выбраны в определенной последовательности — «по воле случая». Например, в Москве около 2 500 средних школ, каждаяиз которых имеет свой номер. Мы могли бы выбрать наугад 100 номеров и провести опрос 100 директоров (завучей, учителей физики, классных руководителей 11-х классов и т. п.) в этих школах.

Эти 100 номеров мы можем выбрать с помощью таблицы или «генератора случайных чисел» (есть такая специальная компьютерная программа), а также с помощью «барабана» но принципу того, как это делается при проведении лотереи. Такие способы построения выборки называются «простой случайной выборкой» . Каждый ее элемент отбирается независимо и имеет равную вероятность попасть в выборку.

Мы могли бы выбрать наугад любое число от 1 до 25, например— 12, а затем взять в выборку школы с номерами: 12, 37, 62, 87, 112, 137 и т. д. Такой метод построения называемся «систематической выборкой» , первый элемент которой выбирается произвольно, а затем выбирают каждый i-й элемент.

Мы также могли бы сначала разделить эти школы на несколько страт (возможно, и пересекающихся), например, на школы физико-математические, спортивные, лингвистические и гуманитарные, а затем произвести случайную или систематическую выборку (по 20-30 школ) из каждой страты. Такой метод построения называется «стратифицированной выборкой» .

Разновидностью стратифицированной выборки является «маршрутная выборка» , суть реализации которой состоит в следующем. Город делится на 20-40 «секторов» по числу интервьюеров, задействованных и исследовании. Каждый интервьюер получает один сектор, маршрут обследования «своего» сектора и инструкцию по реализации простой случайной выборки. Например такую: «Начать обход с улицы Баумана, с дома № 2, третьего подъезда, второго этажа сверху, первой квартиры слева. Затем — дом № 4, второй подъезд, третий этаж, вторая квартира справа. Потом — переулок Комсомольский, нечетная сторона. Потом — тупик Коммунизма. и т. д.»

Наконец, мы могли бы разделить генеральную совокупность на непересекающиеся кластеры, к примеру, по муниципальным районам (их в Москве 125, и в каждом в среднем по 20 школ). Затем случайным образом выбрать пять районов и произвести обследование всех школ данного муниципального района. Такой метод построения называется «кластерной выборкой» .

Тем не менее у вероятностных методов построения выборки есть один весьма существенный недостаток. Каждый из них исходит из предположения о том, что все элементы генеральной совокупности являются равнодоступными: и в «техническом» смысле (у всех есть телефон для телефонного опроса или доступ в Интернет), и в «психологическом», т. е. все респонденты с примерно равной вероятностью согласятся или откажутся принимать участие в исследовании. Однако это не так.

Граждане с относительно высокими доходами менее доступны для исследователей, чем те, чьи доходы невысоки . И нет никакой силы, которая могла бы заставить этих люден отвечать им вопросы социологов или маркетологов. Поэтому все выборки всегда смещены в сторону средне- и малообеспеченных групп населения. Во всех без исключения странах мира.

Менее образованные граждане идут на контакт с социологами менее охотно, чем лица с высшим образованием. Поэтому в большинстве выборок доля хорошо образованных граждан как правило существенно выше, чем в генеральной совокупности.

Никто из сотрудников исследовательских компаний не желает общаться с бомжами, алкоголиками, наркоманами, психо- и социопатами и прочими маргиналами. И у руководителя исследования нет решительно никаких возможностей заставить своих сотрудников делать это. А между прочим, к этим группам в России по взвешенным оценкам относится от 12 до 15% жителей Следовательно, любая выборка смещена в сторону «вменяемых» граждан.

Некоторые граждане боятся отвечать на вопросы, даже самые невинные. Таких людей немного, но они есть. А вот способов заставить их участвовать в опросе нет.

Наконец, есть люди, которые просто не желают участвовать в исследовании. У них есть время, они ничего не боятся, они все понимают, но на вопросы отвечать отказываются. И точка.

Таким образом, все выборки в маркетинге и социологии являются смещенными в сторону средне- и малообеспеченных, более образованных, контактных и вменяемых граждан . Они и репрезентируют общее мнение генеральной совокупности. И все исследователи рынка прекрасно это знают.

Преодолеть наложенные выше проблемы можно с помощью метода «квот» , относящегося к детерминированным методам, при котором априори обеспечивается пропорциональное представительство носителей существенных признаков (пол, возраст, доход, образование и т. п.) генеральной совокупности в выборке.

Это наиболее эффективный, на наш взгляд, метод проведения массовых опросов. При его использовании существенно облегчается задача поиска корреляционных связей, сравнения различных типов (групп) потребителей между собой и экстраполяции выявленных закономерностей на генеральную совокупность.

Единственная, но весьма существенная трудность при реализации него метода состоит в том, что не всегда доподлинно известно распределение всех важных параметров в самой генеральной совокупности . В этом случае исследователь или консультант исследовательского проекта должен взять на себя смелость распределить квоты по своему усмотрению, в соответствии со своим видением, пониманием рынка.

Задача достижения строгой репрезентативности не всегда является важной. Иногда целесообразно воспользоваться существенно более простыми в реализации детерминированными методами:

Достоверность и погрешности измерений

Под «достоверностью», уровнем достоверности понимают показатель вероятности того, что истинное значение изучаемого параметра генеральной совокупности попадет в доверительный интервал. Чем выше задаваемый уровень достоверности, тем больше должна быть выборка. Под доверительным интервалом понимают диапазон, в который попадет истинное значение изучаемого параметра генеральной совокупности при данном уровне достоверности. Чем он меньше, тем больше должна быть выборка.

Читайте также:  Суфле шоколадное способ приготовления

К примеру, общероссийская городская выборка (14-65 лет) в 1 200 респондентов имеет доверительный интервал 4 процентных пункта при уровне достоверности 0,95. При ее проведении 15% участников опроса заявили, что за последние три месяца были в кинотеатре хотя бы один раз.

Эти данные позволяют нам утверждать с заданным уровнем достоверности, что от 11 до 19% жителей российских городов в возрасте от 14 до 65 лет были в кинотеатре хотя бы один раз за последние три месяца. Иными словами, можно сказать, что все значения между 11 и 19% в данном случае находятся в пределах «допустимой статистической погрешности». Если бы мы хотели задать доверительный интервал в 2 процентных пункта, то выборку (при прочих равных условиях) пришлось бы увеличить примерно в четыре раза.

Со стороны уровня достоверности эти данные означают, что если бы было проведено 100 независимых измерении (опросов) по 1200 респондентов в каждом, то в 95 из них значение доли ответов на вопрос о посещении кинотеатра не вышло бы за пределы доверительного интервала (в этом конкретном случае — 11-19%). А в пяти исследованиях или бы получены значения, выходящие за пределы доверительного интервала. Если бы нас устраивала достоверность на уровне 0,9, то опросить можно было бы 200 человек. Если нам нужна достоверность на уровне 0,99, то пришлось бы опросить более 10 тыс. человек.

Оптимальный размер выборки

Вот одна из формул расчета необходимого объема выборки, используемая при известном среднем отклонении (дисперсии) и заданных уровнях достоверности и точности:

N = (g 2 * z 2 ) / d 2

где: N — искомый объем выборки; g — дисперсия признака, ожидаемое среднее отклонение получаемых результатов от ожидаемого среднего значения; z — коэффициент уровня достоверности (2 — для 0,95, 3 — для 0,99); d — уровень точности.

Допустим, мы изучаем поведение покупателей в продовольственном магазине, в частности, мы хотим определить среднюю сумму чека. Из бесед с владельцем магазина мы узнаем, что она может быть в районе 500-700 руб., а среднее отклонение (g) может составить 200 руб. В ходе опроса мы хотели бы определить среднее значение с точностью (d) до 20 руб. при уровне достоверности (z) в 0,95. Подставляем значения формулу и получаем:

40000 * 4 / 400 = 400.

То есть нам достаточно опросить 400 покупателей . Если бы мы хотели узнать среднюю сумму чека с точностью до 10 руб.. то нам пришлось бы опросить 1600 покупателей. Если бы при этом мы хотели получить уровень достоверности в 0,99, то количество покупателей, которых необходимо опросить, составило бы 3 500 человек. И наоборот: если нас устроила бы точность ±50 руб., то нам достаточно было бы опросить в заданных условиях всего 65 человек.

Практическое использование этой и других формул, которые здесь не будут приводиться, весьма затруднено следующими обстоятельствами:

На практике сначала определяют количество респондентов, которое исследователи предполагают опросить с учетом временных и финансовых ограничений, задают уровень достоверности (обычно — 0,95), а затем уже рассчитывают доверительный интервал.

Определение необходимого и достаточного объема выборки происходит на основе опыта и неформальных «конвенций» исследователей между собой. Считается, и это многократно проверено на практике, что опрос 30-50 представителей конкретной, «узкой» социально-демографической группы населения, например «ярославских замужних женщин в возрасте 30-45 лет, имеющих одного ребенка, высшее образование и совокупный семейный доход в пределах от 1 500 до 3 000 долл. в месяц», можно распространять на всю эту группу, и допустимая ошибка (доверительный интервал) не превысит 4 процентных пунктов при уровне достоверности около 0,95.

Однако полученные данные нельзя распространять, например, на незамужних женщин того же возраста, имеющих такой же доход и уровень образования. А также на женщин, имеющих иной доход, возраст или уровень образования. И уж тем более — на мужчин.

Таким образом, если в задачу исследователя входит получение информации о мнениях, знаниях, поведении или отношении к некой проблеме всех ярославских женщин, и при этом все перечисленные выше социально-демографические факторы являются значимыми, необходимо построить такую выборку, в которой были бы представлены все «узко определенные» группы. В данном случае — две группы по семейному положению, три — по наличию и количеству детей, три возрастные, три доходные, две образовательные. Итого 108 групп, в каждой из которых должно быть не менее 30 представительниц. Всего — более 3 000 респондентов.

На самом деле едва ли найдется вопрос или проблема, на которые все пять факторов будут оказывать взаимное перекрестное воздействие. В большинстве случаев вполне можно было бы обойтись опросом 400-600 респонденток, а затем провести попарный (а не перекрестный) факторный анализ. То есть отдельно исследовать влияние факторов «возраст», «образование», «доход», «семейное положение», «дети». При этом выборка каждый раз разбивалась бы на две-три группы, наполнение которых было бы не меньше 100-150 респондентов.

Репрезентативная выборка, представляющая все население России, должна состоять из 3 600-9 000 человек и 180 групп (два пола, три возраста, два образовательных уровня, три доходные группы, пять типов поселений). Доверительный интервал будет в пределах ±3 процентных пункта. Это означает, что, к примеру, если 30% (12% или 45%) наших респондентов заявили, что регулярно употребляют в пищу майонез, то долю потребителей майонеза в России можно оценить в 27-33% (9-15 или 42-48% соответственно).

Размер выборки практически не зависит от размера генеральной совокупности . И в мегаполисе с населением более миллиона человек, и в уездном городе с населением в 35 тыс. человек для построения выборки, репрезентативной по одинаковому числу параметров, потребуется опросить одинаковое число респондентов.

От чего действительно зависит размер выборки — так это от числа параметров , по которым мы желаем добиться репрезентативности. Если нас устраивает репрезентативность только по полу и возрасту, то выборки в 400 человек в одном населенном пункте будет более чем достаточно. Если параметров три, количество респондентов придется увеличить до 600. Добиться репрезентативности выборки одновременно по пяти параметрам: полу, возрасту, доходу, образованию, сфере профессиональной деятельности — можно лишь на выборке из 1 000-1 200 человек в одном населенном пункте.

В вашей почте раз в неделю. А еще: новости, акции и мероприятия для HR.

Источник

Оцените статью
Разные способы