Приемник прямого преобразования способы построения рпу

Приемник прямого преобразования частоты

Рассмотренная схема детекторного приемника позволяет получить информацию об амплитуде принимаемого радиосигнала. Эффективность работы детектора определяет чувствительность радиоприемного устройства.

Первые приемники прямого преобразования появились на заре развития радиотехники, когда ещё не было радиоламп, связь проводилась на длинных и сверхдлинных волнах, передатчики были искровыми и дуговыми, а приёмники, даже профессиональные — детекторными.

Было замечено, что чувствительность детекторного приемника существенно возрастает, если на детектор подать колебания маломощного генератора, работающего на частоте, близкой к частоте принимаемого сигнала. При приеме телеграфного сигнала были слышны биения со звуковой частотой, равной разности частоты гетеродина и частоты сигнала. Рассмотрим природу этого явления.

Избирательность детекторного приемника по частоте обеспечивается полосовым фильтром, включенным на входе амплитудного детектора. Ту же самую задачу можно решить, если перенести энергию принимаемого сигнала в область низких частот. В этом случае избирательность по частоте можно будет осуществить фильтром низкой частоты, сложность которого при тех же характеристиках подавления соседнего канала будет в два раза меньше. Перенос спектра радиочастот в область низких частот можно осуществить при помощи следующего тригонометрического преобразования:

В качестве второго синусоидального сигнала с частотой, совпадающей с частотой принимаемого радиосигнала, применяется сигнал местного генератора, называемого гетеродином. Напряжение на выходе перемножителя, который в данном случае называется синхронным детектором, будет записываться следующим образом:

Напряжение удвоенной частоты радиосигнала легко может быть подавлено фильтром низкой частоты. Процесс переноса модулирующих частот с частоты рабочего канала на нулевую частоту поясняется рисунком 1.


Рисунок 1. Процесс рабочего канала на нулевую частоту

Структурная схема приемника прямого преобразования, реализующая описанный выше принцип переноса спектра полезного сигнала в область низких частот, приведена на рисунке 2.


Рисунок 2. Структурная схема приемника прямого преобразования

В этом приемнике полосовым фильтром выделяется группа частот, в которой присутствует входной сигнал, затем синхронным детектором осуществляется перенос спектра в область низких частот. Подавление частот соседних каналов в данной схеме может осуществить как полосовой фильтр на входе детектора, так и фильтр низкой частоты, расположенный на его выходе. Известно, что сложность фильтра низкой частоты в два раза ниже сложности полосового фильтра с той же самой избирательностью. Поэтому схема приемника прямого преобразования выгоднее как с точки зрения надежности, так и с точки зрения стоимости устройства.

Определим требования к фильтру низкой частоты (ФНЧ) приемника прямого преобразования. На рисунке 3 приведены спектры полезного сигнала и сигнала соседнего канала. На этом же рисунке приведена амплитудно-частотная характеристика фильтра нижних частот синхронного детектора, входящего в состав приемника прямого преобразования.


Рисунок 3. Требования к фильтру низкой частоты в приемнике прямого преобразования

Сложность фильтра низких частот зависит от его порядка. Требования к порядку фильтра приемника прямого преобразования задаются крутизной ската его амплитудно-частотной характеристики фильтра (АЧХ). В общем случае эти требования зависят от конкретного вида сигнала, применяемого в данной системе связи.

Пусть частота соседнего канала будет в три раза больше верхней частоты полезного сигнала. Тогда расстройка частоты Fск = fск/fв будет равна 3, и фильтр первого порядка обеспечит подавление этой частоты в три раза. Эта же цифра может быть выражена в децибелах:

Обычно требуется подавление соседнего канала не менее 60 дБ. Тогда необходимый порядок фильтра нижней частоты можно определить при помощи следующей формулы:

Итак, в данном случае фильтра шестого порядка недостаточно и требуется применить фильтр Баттерворта седьмого порядка.

В современных вариантах приемника прямого преобразования на выходе фильтра стоит аналого-цифровой преобразователь и схема цифровой обработки сигналов. В этом случае задача подавления соседнего канала может осуществляться этой цифровой схемой, и тогда требования к фильтру, расположенному на выходе перемножителя, могут свестись к требованиям к фильтру первого порядка, и его задача будет заключаться в подавлении высокочастотных образов полосы пропускания цифрового фильтра (антиалайсинговый фильтр).

Требования к усилителю низкой частоты определяются необходимым коэффициентом усиления полезного сигнала. Часто значение необходимого коэффициента усиления достигает нескольких тысяч. Тогда на первое место выходят шумовые характеристики усилителя. В этом случае желательно ограничить полосу сигнала и на выходе УНЧ для подавления его внеполосного шума.

Изменение уровня полезного сигнала в зависимости от условий распространения радиоволн может потребовать применения схемы автоматической регулировки усиления (АРУ). Эта схема будет рассмотрена нами в последующих главах.

В рассмотренной на рисунке 2.9 схеме, требуется обеспечить точную синхронизацию сигнала гетеродина и принимаемого сигнала. Это выполнить достаточно сложно. Кроме того, следует учитывать тот момент, что исходный сигнал может содержать информацию, заложенную в фазе высокочастотного сигнала, поэтому для того, чтобы не потерять ее, необходимо в качестве сигнала гетеродина формировать сигнал комплексной экспоненты, или, иначе говоря, синусоидальный и косинусоидальный сигнал одновременно:

Так как приращение фазы в сигнале может быть как положительным, так и отрицательным, то в нем могут присутствовать как положительные, так и отрицательные частоты (рисунок 2.10). Эта ситуация иллюстрируется рисунком 2.13.


Рисунок 4. Направление вращения вектора фазы при положительной и отрицательной частотах

Читайте также:  Домашний майонез способы приготовления

Для переноса спектра исходного сигнала в данном случае потребуется два умножителя сигналов. В результате на выходе схемы будет сформировано два квадратурных сигнала I и Q. Радиоприемник, построенный по такому принципу, называется приемником прямого преобразования. Его структурная схема приведена на рисунке 3.

Рисунок 5. Структурная схема приемника прямого преобразования

В этой схеме подавление частот соседнего канала осуществляется фильтрами низкой частоты, которые расположены сразу после частотных преобразователей (умножителей). После подавления помех осуществляется основное усиление принимаемого сигнала. Окончательное демодулирование принятого сигнала производится схемой цифровой обработки сигналов, которая может быть выполнена либо на сигнальном процессоре (СП), либо на программируемой логической схеме (ПЛИС).

Для построения фильтра нижней частоты с той же крутизной ската частотной характеристики требуется в два раза меньше элементов по сравнению с полосовым фильтром, поэтому, с математической точки зрения, эта схема является идеальной при построении радиоприемников.

Схема прямого преобразования позволяет легко строить многодиапазонные приемники. Для перехода с одного диапазона на другой достаточно сменить частоту гетеродина. Это очень удобно для реализации одновременно GSM, GPRS и 3G приемников.

К сожалению, в настоящее время очень трудно реализовать умножители с достаточно большим динамическим диапазоном и только по мере развития цифровых технологий эта схема постепенно становится все более распространенной и с ее помощью удается реализовывать все более высококачественные приемники.

Если бы в схеме приемника прямого преобразования удалось реализовать идеальный умножитель, то больше никакого блока на входе синхронного детектора не требовалось. К сожалению это не так. Поэтому на входе умножителя приходится ставить полосовой фильтр, от которого требуется уменьшить количество мешающих сигналов, поступающих на вход синхронного детектора. Это позволяет приблизить его свойства к свойствам идеального умножителя. Тем не менее, требования к полосовому фильтру получаются значительно ниже по сравнению с требованиями, если бы полосовой фильтр должен был выполнять подавление соседнего канала.

Понравился материал? Поделись с друзьями!

  1. Поляков ВТ «Радиолюбителям о технике прямого преобразования» — М.: «Патриот» 1990г.
  2. http://www.radioscanner.ru/info/article197/
  3. http://www.radiostation.ru/drm/phasefilter.html Фазофильтровый DRM приемник
  4. Приёмники SDR (http://www.rw3ps.com/)

Вместе со статьей «Приемник прямого преобразования частоты» читают:

Детекторный приемник Основной функцией радиоприемного устройства является извлечение полезной информации из принимаемого сигнала.
https://digteh.ru/WLL/DetPrm.php

Приемник прямого усиления Для увеличения чувствительности радиоприемника (уменьшения коэффициента шума приемника) между входом синхронного детектора и выходом входного устройства приемника размещают малошумящий усилитель.
https://digteh.ru/WLL/PrmPrjamUsil.php

Супергетеродинный приемник Для того чтобы решить проблему роста необходимой добротности с ростом несущей частоты, стали разбивать задачу на два этапа — перестройка по диапазону частот, и обеспечение избирательности по соседнему каналу.
https://digteh.ru/WLL/PrmSupGeter.php

Супергетеродинный приемник с двойным преобразованием частоты При двойном преобразовании частоты сначала переносят группу каналов на первую промежуточную частоту, выделяют ее, а затем выделяют рабочий канал на второй промежуточной частоте. Этот процесс.
https://digteh.ru/WLL/PrmDvPreobr.php

Автор Микушин А. В. All rights reserved. 2001 . 2021

Источник

Мини-лекции. Приёмник прямого преобразования

Уважаемые читатели, Вы знаете что такое: детектор, «деревянная антенна», металлический изолятор? А почему это зеркало зеркальное? Что такое радио FM? Вы слышали про такое как: гармоники, обратная связь, супергетеродин? Из какой «оперы» такие названия как: максимум максиморум, DSB, SSB, ПАЛСЕКАМ? Что чернее чёрного? И почему это кино, которое Вы смотрите по телевидению, короче на 4%? А Вы знаете как подключить два-три телевизора к одной антенне? А почему одни спутники «висят» над землёй, а другие движутся? Если Вы затрудняетесь с ответом или впервые слышите обо всём этом, или Вам просто интересно, то все мои мини-лекции для Вас!

Все мини-лекции в большей или меньшей степени связаны между собой. И содержание предыдущей лекции так или иначе раскрывает содержание последующей! Насколько возможно, постараюсь Вас не нагружать подробностями. Думаю, что Вы узнаете что-то новое для себя, полезное и посмотрите на всё другими глазами!?

Что же это за приёмник такой, прямого преобразования?! Это, что-то новенькое? Но как оказалось, новое — хорошо, очень хорошо забытое старое! Про прямое преобразование впервые я узнал где-то в семидесятые и то случайно. Собрал небольшой приёмник схема на рис3., — да, работает и даже неплохо! Но каково же было моё удивление когда я узнал, что этот принцип случайно был применён ещё в 1901-м году. И была обнаружена некая закономерность, что случайно включенный генератор позволил резко повысить качество приёма. Такой генератор был назван гетеродином. Умный словарь нам опять же поясняет, что гетеродин с греческого heteros «другой» + dynamis «сила». То есть вспомогательный генератор, придающий нам силу, большие возможности. С появлением амплитудной модуляции и новых методов приёма все «гетеро» стали как-то уходить на второй план. А с изобретением супергетеродина в 30-х годах про эти «гетеро» и вообще забыли напрочь!

О том, что такое супергетеродин я уже рассказывал Вам в предыдущей лекции. А почему же именно супер? И что такое супер, — слово которое нередко звучит сейчас со всех сторон? А тот же умный словарь поясняет, что супер от латинского super «сверху, над». А сверху, над, это над чем? А над тем, что в начале радиоэры в приёмниках использовалось для приёма телеграфных сигналов, то есть над гетеродином. С помощью этого самого гетеродина можно было принимать сигналы не только на телеграфный аппарат, но и на слух! Что сейчас, до сих пор и практикуется. И при помощи того же самого гетеродина, чтоб он был здоров! А супер это как бы над тем вот телеграфным гетеродином. Так, что получается если в бытовых приёмниках (как пример в предыдущей лекции) нет гетеродина для приёма телеграфа, то стало быть он и не супергетеродин, а так себе, — чёрти, что и сбоку дверца?! Ну дык, раз уж так назвали. Ну и чёрт с ним, с бытовым приёмником, пусть будет супергетеродином!

Читайте также:  Лучший способ обогрева теплицы

Итак, мы с Вами познакомились на предыдущих лекциях с видами приёма и самими приёмниками. Это: детекторные, прямого усиления и супергетеродин. Детекторные и прямого усиления приёмники одного и того же принципа. Настройка на нужную частоту, детектирование и усиление. И более ничего! В супергетеродине ( блок-схема рис1.) путь от антенны и до детектора несколько иной. Сигнал после фильтрации входным контуром зеркальных и прочих каналов попадает в смеситель. Туда же попадает частота вспомогательного генератора, — гетеродина. На выходе смесителя от такого воздействия получается частота биения, названная промежуточной. После дополнительного усиления она попадает наконец-то в детектор. Ну, далее всё также как и в приёмнике прямого усиления.

А так как человек существо мыслящее, то ему вдруг стукнуло, а почему бы не обойтись без всяких промежуточностей. А взять, да получить сразу же результат, — звуковую частоту? Сказано-сделано! Так родился новый принцип, — принцип прямого преобразования. Стало быть и приёмники стали называться приёмниками прямого преобразования. Хорошо? Хорошо-то хорошо, да ничего хорошего?! Как оказалось, что для приёма популярной амплитудной модуляции такой принцип мягко говоря не пригоден! А уж про частотную даже и говорить не стоит. А для чего же он тогда пригоден?

На рис2. показана блок-схема такого приёмника прямого преобразования. Если приглядеться, то многое напоминает супергетеродин. На схеме ПФ — полосовой фильтр, тот же контур, что и в супергетеродине. После смесителя тоже стоит фильтр, только не какой-то там промежуточной, а сразу же низкой частоты, звуковой. А далее аналогично рис1. УНЧ, — усилитель низкой частоты и громкоговоритель (головные телефоны). Усиление как видите в основном происходит в УНЧ и никаких-то там сложнейших фильтров! А выжимать из УНЧ все соки мы уже давно научились!

На рис3. Вы видите уже принципиальную схему простого приёмника испробованного мною ещё в восьмидесятые годы. Если кто-то, когда-то, что-то собирал (приёмники, усилители и пр.) могли заметить, что нет в схеме ничего сверх-сверх, обычные и вполне доступные комплектующие! И схема уж всяко проще любого супергетеродина. Хотя чувствительность в пять раз выше обычного бытового приёмника. И по показателям даже приближается к промышленным, связным!

Чтобы не загромождать картинку я убрал данные составляющих. Если у кого-то появится интерес, — без проблем, через E-mail стало быть! Плюс ко всему, есть ещё и электронные книги в тему. На схеме: жёлтыми метками обозначен входной контур. Зелёным цветом два диода, — смеситель. Пурпурные метки, фильтр НЧ. Синий цвет, всё, что касается УНЧ. И наконец, красным цветом все составляющие гетеродина.

Теперь, когда Вы немного в теме, поговорим о том что же это за прямое преобразование?! И хотя всё это на стадии бесконечных экспериментов, но. Но всё это в основном делается радиолюбителями, даже довольно грамотными! И один из них пишущий! Это Поляков Владимир Тимофеевич. По крайней мере несколько его книг можно найти в сети или в магазинах в бумажном варианте.

Это книги: «Радиолюбителям о технике прямого преобразования»; «Приёмники прямого преобразования для любительской связи»; «Трансиверы прямого преобразования» и ряд других.

Так кто же применяет этот принцип прямого преобразования? И вообще в чём кайф от этого всего? Ну. Пока это всё применяют радиолюбители-коротковолновики. Или просто интересующиеся радиолюбительством. Какой же вид модуляции в настоящее время применяют коротковолновики для проведения связей? Ушли в прошлое такие виды как АМ (Амплитудная модуляция) и ЧМ (Частотная модуляция). И, что? Для телеграфной связи (CW) собственно ничего не изменилось: всё те же посылки точек и тире, в виде высокочастотных импульсов, а в телефонии — SSB, так называемая связь на одной боковой полосе. Как получается SSB-сигнал я рассказывал в Мини-лекции «Модуляция». В общем виде (так уж всё получается!) мы принимаем набор радиочастот с изменяющейся амплитудой и каждая такая радиочастота первоначально соответствовала определённой звуковой!

А как определить что, есть что? Правильно! Точкой опоры является несущая частота. Но это в АМ-сигнале. Там расстояние на частотной шкале от несущей до какой либо радиочастоты соответствовал определённой, звуковой! Железная привязка! Но несущую отрезали и. И теперь её нужно восстановить, но уже на месте приёма. Но как попасть куда надо? А надо ли? И, что произойдёт если не туда, куда надо? Конца света конечно не будет, а всего лишь сдвиг звукового спектра! Голос оператора с той стороны (в большинстве случаев Вы его просто можете не знать?) может изменяться в больших пределах и Вы лично решаете какой Вам приятнее?! А меняя расстояние (на шкале частот) между восстановленной несущей и спектром радиочастот боковой полосы путём настройки, Вы заставляете своего корреспондента говорить то басом, то тенором. Естественно, это Ваш выбор!

Читайте также:  Тушение резервуаров с нефтепродуктами способы

А, что телеграф? Как SSB-сигнал, так и CW, телеграфный на обычный бытовой приёмник Вы не примете. Точнее примете, но толку никакого! Телеграф будет хлопать Вам по ушам и не более, а SSB какое-то кваканье-хрюканье неразборчивое и всё! И только при включение искусственной несущей (гетеродина) всё меняется до неузнаваемости! Телеграф начинает мелодично пиликать. SSB превращается в чистую человеческую речь!

Всё это делалось и в супергетеродине, — приёмнике для связи, но. Но там из-за борьбы с зеркальными и прочими нехорошими каналами приходилось такие городки городить. В результате получались промышленного изготовления сундуки от 40 и более килограмм! А как здесь с этим прямым преобразованием? Такие же заморочки? И да и нет! Скорее нет, чем да. Здесь основной и зеркальный сливаются в один и как бы (по сравнению с супергетеродином) не учитываются?! Супергетеродинными методами здесь эти зеркальные каналы не побороть! В супергетеродине расстояние между основным каналом и зеркальным равно удвоенной промежуточной частоте. Так в бытовых приёмниках при промежуточной равной 465 кГц расстояние между каналами будет 930 кГц. И чем больше величина промежуточной частоты, тем дальше друг от друга будут располагаться каналы рис1. (a, b). Стало быть легче и эффективнее можно бороться с зеркальными каналами! А в приёмнике прямого преобразования средние частоты каналов расположены на расстоянии 3 кГц! О чём здесь можно ещё говорить?! В общем виде всё это на рис2. (a). Почти без проблем происходит борьба с паразитными каналами, образующимися с участием гармоник гетеродина (куды ж без них?). Их очень эффективно подавляют входным фильтром даже одиночным, LC-контуром.

Но проблема зеркальных каналов только в простых приёмниках неразрешима. В более сложных, ненужную полосу пропускания (зеркальный канал) убирают так называемым фазовым методом! На рис5. (a) осцилограмма фазового метода подавления зеркального канала. В данном случае нижней боковой полосы пропускания (НБП). Зелёным цветом помечена оставшаяся верхняя боковая полоса пропускания (ВБП). В реальности полоса пропускания будет выглядеть как на рис2. (a), но без нижней боковой, та, что обозначена синим цветом. Так, что не всё так плохо?! В случае приёма прямого преобразования (с подавленной одной боковой полосой) субъективно эфир кажется более чистым и прозрачным! И даже при очень слабом сигнале есть 100% уверенность, что Вы принимаете истинную частоту, а не зеркально-комбинационную грязь?!

Как же всё это выглядит в реальности при приёме на наш простой приёмник рис3.? Но с телеграфом там можно не беспокоиться, иногда такая ситуация (с двумя полосами пропускания) бывает даже полезна! Посмотрите на рис4.(b). Скажем у нас основной канал слева от fг частоты гетеродина, зеркальный справа. Мы можем перестроить частоту гетеродина правее зеркального. После чего он превратится в основной, но уже отодвинутый от какой-нибудь помехи! Так часто делается. А что с SSB? Здесь гораздо хуже! Мешающий сигнал рис4.(a)(SSB и имеющий такую же боковую полосу <красного цвета>, что и основной <зелёного цвета>) в силу своего положения относительно несущей, оказывается вывернутым наизнанку! Самые низкие частоты речевого спектра становятся верхними, а верхние нижними! Речь становится отвратительной и непонятной. На рис4.(с) видны пересекающиеся спектры основного и зеркального каналов, хотя они и не находятся на одной частоте! И если радиолюбителей это ещё как-то устраивает (они выкручиваются как могут?!), то профессионалов, — нет! По крайней мере пока я не слышал о применение прямого преобразования в профессиональной технике?! Но это пока.

То о чём я хочу Вам рассказать далее не очень относится к теме, а скорее к её практической стороне. На рис5. показана передняя часть приёмника прямого преобразования. Очень похожего на промышленный образец? Ну, в общем, это где-то, так! Маленькая ручка управления слева (RF) это аттенюатор, по-русски регулятор уровня сигнала, поступающего из антенны. Вторая маленькая ручка, она справа внизу, регулятор громкости (AF). Тумблер переключения фильтров НЧ (CW/SSB) в правом верхнем углу лицевой части приёмника. И наконец-то (посередине) ручка настройки на частоту станции. Так-как аппарат однодиапазонный (80 метровый), то и шкала одна. В принципе перестроить на другой диапазон не составит большого труда.

Источник

Оцените статью
Разные способы