Приборы для измерения способ включения сила тока

Какими приборами можно измерить мощность постоянного тока

Используемые приборы

Измерить силу тока можно различными способами, однако далеко не все из них применимы в повседневной жизни. К примеру, различные измерительные трансформаторы, подключаемые в цепь, крайне неудобно переносить по дому и даже хранить на полке в гараже. Поэтому актуальными средствами измерительной техники являются амперметры, мультиметры и клещи. Далее рассмотрим детально особенности работы и применения каждого из них.

Амперметр

Это один из наиболее простых измерительных приборов, который реагирует на изменение токовой нагрузки. С электротехнической точки зрения амперметр представляет собой нулевой или бесконечно малое сопротивление. Поэтому в случае приложения напряжения только к прибору, в нем возникнет ток короткого замыкания, из-за чего амперметр включается в цепь последовательно замеряемой нагрузке. Для наглядности стоит пояснить, что измерить силу тока в розетке нельзя, так как без нагрузки (в случае разомкнутой цепи) ток в ней не протекает, на контактах розетки присутствует только напряжение, поэтому подключение амперметра напрямую приведет к замыканию.

Под электрическим током подразумевается направленное движение заряженных частиц, которое проходит через поперечное сечение проводника за определенную единицу времени. Поэтому запомните, что токовая нагрузка возникает лишь от включения бытового электроприбора к источнику питания. Включение амперметра отдельно к точке электроснабжения или отдельно к рабочему двухполюснику никоим образом не даст информации о силе тока. Если рассмотреть пример на схеме, то чтобы замерить амперы вы должны включить прибор в линию последовательно к объекту измерения:


Рис. 1. Пример подключения амперметра

Как видите, основная сложность заключается в том, что процесс измерения происходит непосредственно в момент протекания электрической энергии, соответственно, велика вероятность поражения электрическим током в случае нарушения технологии.

Чтобы избежать плачевных последствий, необходимо соблюдать такие правила:

  • Подключение производится только при отсутствии напряжения;
  • Измерительные провода должны быть заизолированы, а места подключения удалены от человека, при необходимости исключена возможность прикосновения к ним;
  • Выведение амперметра из цепи измерения тока также выполняется при снятом напряжении.

Так как амперметр является узконаправленным прибором для измерения силы тока, его редко кто хранит у себя дома. Поэтому если вы хотите приобрести приспособление, куда выгоднее обзавестись мультиметром, который обладает значительно более широким функционалом.

Мультиметр

Этот прибор также называют тестером, Ц-эшкой, поэтому в обиходе можно встретить разные поколения мультиметра. Принцип использования мультиметра в качестве средства для измерения тока в цепи полностью аналогично амперметру, как по схеме включения, так и по предъявляемым мерам предосторожности. Однако следует отметить, что мультиметр мультиметру рознь, поэтому перед включением тестера обязательно посмотрите, подходит ли он, чтобы измерить ток в вашем случае.

Из конструктивных особенностей сразу отметим:

  • Диапазон измерения – выставляется переключателем на определенную величину силы тока. Выбирается таким, чтобы предполагаемая нагрузка его не превышала, но была соизмеримой.
  • Род тока – переменный или постоянный, заметьте, что некоторые модели мультиметров предоставляют возможность измерить только один вариант.
  • Разделение на слаботочные и силовые измерения – такие приборы имеют отдельную шкалу на мА, мкА и отдельную для А. Также в них могут располагаться отдельные разъемы, чтобы подключить щупы.
  • Наличие защиты от перегрузки при подключении измерительных устройств, обозначается отметкой unfused. Которая свидетельствует о наличии предохранителя, способного предотвратить выход со строя мультиметра от протекания чрезмерной силы тока.

По способу отображения информации все мультиметры подразделяются на циферблатные и дисплейные. Первые из них – довольно устаревшая модель, ориентироваться по ним смогут только искушенные электрики, знакомые с основами метрологии. Новичок же может запутаться в показаниях на шкале, цене деления или какими единицами измеряется нагрузка. Поэтому применение цифрового прибора куда проще и удобнее, на дисплее отображается конкретное число.

Токоизмерительные клещи

Это наиболее удобный прибор, так как чтобы измерить силу тока токоизмерительными клещами, нет нужды разрывать цепь. Конструктивно клещи представляют собой разъемный магнитопровод, в который и помещается проводник, на котором вы хотите померить силу тока. Токоизмерительные клещи имеют схожесть с тем же мультиметром, а в более продвинутых моделях вы встретите такой же переключатель с функцией определения мощности, напряжения, сопротивления, силы тока и разъемы для подключения щупов.

Работа и мощность электрического тока

На одном из прошлых уроков мы с вами говорили о том, что заряженные тела взаимодействуют друг с другом посредством особого вида материи, которую называют электрическим полем. Примером такого взаимодействия может служить электрический ток, то есть упорядоченное движение заряженных частиц, которое создаётся электрическим полем. Следовательно, электрическое поле способно совершать работу, которую называют работой тока.

Давайте вспомним, что в общем случае под работой понимают скалярную физическую величину, которая описывает действие силы (заметьте, именно силы, а не те́ла), приводящее к изменению значения скорости рассматриваемого тела.

Читайте также:  Способ как сделать лизуна без клея

Из этого становится очевидным, что термин «работа тока» — это своеобразный жаргонизм, с которым вы уже неоднократно сталкивались. Работа тока — это, говоря строгим языком физики, работа электрически сил, которые, перемещая заряженные частицы, увеличивают их скорость, а значит и кинетическую энергию.

Мы уже с вами знаем, что работа по переносу электрического заряда в электрическом поле оценивается произведением величины перенесённого заряда на величину разности потенциалов между начальной и конечной точками переноса, то есть на величину напряжения:

=
ΔqU.
Очевидно, что это соотношение может быть применимо и для оценки работы тока. Однако эта формула имеет неудобство в связи с тем, что и ней фигурирует перенесённый в электрическом поле заряд, измерение которого требует особых методов. Поэтому удобнее расписать этот заряд, используя формулу силы тока:

Такая запись приводит нас к удобной формуле для определения работы электрического тока: работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого шёл ток:

=
IUΔt.
Единицей работы тока, как вы догадались, является джоуль. Эту единицу можно выразить через электрические единицы — ампер и вольт:

1 Дж = 1 А ∙ 1 В ∙ 1 с.

Для измерения работы тока в реальной жизни пользуются специальными приборами — счётчиками электрической энергии, которые сейчас можно увидеть в каждом доме. Однако в них работу тока принято выражать не в джоулях, а в киловатт-часах (1 кВт ∙ час = 3,6 ∙ 106 Дж)

Применяя к потребителю электротока закон Ома, можно из основной формулы работы получить ещё два варианта, исключив в первом случае из формулы напряжение, а во-втором — силу тока:

Получив формулу для работы электрического тока, мы легко получим и формулу для мощности тока. Ведь в любом случае мощность есть отношение работы ко времени её совершения:

Напомним, что единицей измерения мощности является ватт.

А для измерения мощности электрического тока в цепи используют специальные приборы, называемые ваттметрами.

Давайте для примера решим с вами такую задачу. Два потребителя, сопротивления которых равны R

1 и
R
2 подключают к сети постоянного тока сначала последовательно, а потом — параллельно. В каком случае потребляется большая мощность от сети?

На одном из прошлых уроков мы с вами говорили о действиях электрического тока, которые он способен оказывать, протекая в различных средах. Давайте с вами вспомним, что тепловое действие тока

проявляется в том, что при протекании тока по проводнику последний нагревается.

Химическое действие тока

мы можем наблюдать при его прохождении через растворы солей, кислот или щелочей.

А магнитное действие тока

проявляется в создании им магнитного поля.

Также мы с вами говорили о том, что тепловое действие ток производит в любой среде: твёрдой, жидкой и газообразной. Например, нагревание проводника происходит потому, что разогнавшиеся под действием электрического поля свободные носители зарядов — электроны — сталкиваются с ионами кристаллической решётки проводника и отдают им часть своей энергии. В результате энергия теплового движения ионов около положений равновесия возрастает. То есть происходит переход энергии электрического поля во внутреннюю энергию проводника.

При этом, очевидно, что чем больше будет сопротивление проводника, тем большее количество теплоты в нём выделится при протекании электрического тока одной и той же силы.

Это легко проверить на простом опыте. Возьмём три последовательно соединённых проводника, изготовленных из разных материалов, например, из нихрома, никелина и меди, и подключим их к источнику постоянного тока.

Спустя некоторое время мы заметим, нихромовый проводник нагрелся почти до белого каления, никелиновый — лишь слегка покраснел, а вот медный проводник практически не изменил свой цвет.

Таким образом, действительно, чем больше сопротивление проводника, тем «труднее» двигаться зарядам в нём и тем больше нагревается проводник.

В 1841 году английский учёный Джеймс Прескотт Джоуль и независимо от него в 1842 году российский учёный Эмилий Христианович Ленц, изучая на опыте тепловые действия тока установили закон, позволяющий рассчитать количество теплоты, выделяемое в проводнике при протекании в нём электрического тока. Согласно этому закону, количество теплоты, выделяющееся в проводнике, прямо пропорционально квадрату силы тока, проходящего по проводнику, сопротивлению проводника и времени, в течение которого поддерживается неизменный ток в проводнике.

Проверим его справедливость с помощью такого опыта. Возьмём калориметр, содержащий 100 мл миллилитров воды при температуре 18 оС, и поместим в неё проводник в виде спиральки известного сопротивления. Концы проводника включим в цепь, состоящую из источника тока, амперметра и ключа. С помощью секундомера будем засекать время эксперимента.

Замкнув ключ, подождём пока температура воды в калориметре не повысится на 10 оС.

Теперь рассчитаем количество теплоты, полученное водой, используя для этого известную нам формулу из термодинамики:

— это удельная теплоёмкость воды;
m
— её масса; а Δ
t
— изменение температуры воды. Тогда после подстановки чисел и простых расчётов, получаем, что вода получила от нагревателя 4200 Дж теплоты.

Читайте также:  Варианты предложений с их способом выражения

Теперь определим количество теплоты, выделившееся в проводнике, используя для этого закон Джоуля — Ленца:

Подставив в полученное уравнение данные наших опытов, найдём, что за время эксперимента в проводнике выделились те же 4200 Дж теплоты. Это подтверждает правоту закона Джоуля — Ленца.

=
I
2
R
Δ
t
удобно пользоваться при расчёте количества теплоты, которое выделяется в проводниках при последовательном соединении, так как в этом случае ток во всех проводниках один и тот же.

При параллельном же соединении проводников ток в них различен, а вот напряжение на концах этих проводников одно и то же. Поэтому расчёт количества теплоты при таком соединении удобнее вести по формуле: Q

Эта формула показывает, что при параллельном соединении в каждом проводнике выделяется количество теплоты, обратно пропорциональное сопротивлению проводника.

Как измерить силу тока в цепи

Для измерения электрического тока в цепи куда удобнее использовать современные устройства – мультиметры или клещи, особенно для одноразовых операций. А вот стационарный амперметр подойдет для тех ситуаций, когда вы планируете постоянно контролировать силу тока, к примеру, для контроля заряда батарейки или аккумулятора в автомобиле.

Постоянного тока

Разрыв электрической цепи организовывается до начала измерений при отключенном напряжении. Даже в низковольтных цепях вы можете вызвать замыкание батарейки, которое моментально приведет к потере электрического заряда. Далее рассмотрим пример измерения в цепи постоянного тока с помощью мультиметра, для этого:


Рис. 2. Использование мультиметра для измерения постоянного тока

  • подключите щупы к соответствующим вводам в тестер – черный в COM, красный в разъем с пометкой mA, A или 10A, в зависимости от устройства;
  • при помощи «крокодилов» соедините щупы тестера с цепью измерения последовательно;
  • установите переключателем нужный род тока и предел измерений;
  • можете подключить нагрузку и произвести измерения, на дисплее мультиметра отобразится искомое значение.

Но заметьте, подключать мультиметр следует на короткий промежуток времени, так как он может перегреться и выйти со строя.

Переменного тока

Цепь переменного напряжения может измеряться как мультиметром, так и токоизмерительными клещами. Но, в связи с опасностью переменного бытового напряжения для жизни человека, эту процедуру целесообразнее выполнять клещами без измерительных щупов и без разрыва цепи.


Рис. 3. Использование клещей для измерения переменного тока

Для этого вам нужно:

  • переключить ручку в положение переменных токов на нужную позицию нагрузки, если она изначально неизвестна, то сразу выбирают максимальный диапазон;
  • нажать боковую скобу, которая разомкнет клещи;
  • поместить внутрь клещей токоведущую жилу и отпустить кнопку.
  • данные измерений отобразятся на дисплее, при необходимости их можно зафиксировать соответствующей кнопкой.

Производить измерения можно как на изолированных, так и на оголенных жилах. Но заметьте, в область обхвата должен попадать только один проводник, сразу в двух измерить не получится.

Основные принципы замера силы тока


Принципы замера силы тока
Основное условие, которое необходимо выполнить при измерении СТ в электрической цепи – включить тестер в разрыв провода этой цепи, то есть стать на время измерения ее составной частью. Перед тем как измерить силу тока мультиметром, не менее важно правильно выставить на приборе:

  • режим измерения (постоянный или переменный ток);
  • верхний предел измерений.

Неправильно выставленные параметры обязательно приведут к поломке измерительного прибора.

Когда пользователю неизвестен порядок величины силы тока в цепи, необходимо устанавливать максимальный предел измерений. Если выставленный диапазон окажется завышенным, его постепенно снижают, пользуясь для этого переключателем режимов работы тестера.

В электрическую цепь прибор для измерения силы тока подключают последовательно с нагрузкой. При измерении больших токов мультиметр подсоединяют к цепи через трансформатор тока, шунт или магнитный усилитель. Если измерения необходимо провести в электрических цепях с напряжением более 1 кВ, используют трансформатор тока (переменный ток) или магнитный усилитель (постоянный ток).

Техника безопасности

Предупреждение: допустимое время измерения не более 10 сек. не чаще одного раза в 15 мин

Измерения, проводимые в электрических цепях, находящихся под опасным напряжением

220 В, требует соблюдения правил техники безопасности. Безопасным для человека считается ток величиной не более 0,001 А. Любое, даже незначительное ее превышение может привести к поражению пользователя. Поэтому, работая с электричеством, нужно быть предельно внимательными и соблюдать особую осторожность.

Работая на верхних пределах мультиметра, измерения нужно проводить как можно быстрее. Связано это с тем, что многие тестеры не имеют защиты от перегрева, и при длительном контакте с большим током могут просто перегореть, что в свою очередь чревато получением электротравмы. Иногда производители мультиметров предупреждают пользователей о такой опасности, оговаривая, например, что допустимое время измерения не должно превышать 10 сек. не чаще одного раза в течение 15 мин.

Подключение и отключение мультиметра осуществляют после полного обесточивания электроцепи. Подают питание и приступают к измерениям только по окончании всех работ по подключению тестера.

Чтобы избежать поражения электрическим током, необходимо принять меры, препятствующие касанию оголенных токоведущий частей. Также необходимо помнить, что при размыкании функционирующей электроцепи может возникнуть электрическая дуга, которая также спровоцирует получение электротравмы.

Реальные примеры измерения тока

Далее рассмотрим несколько вариантов того, как подключить измерительный прибор в бытовых нуждах. При замерах батареек вам необходимо один щуп приложить к контакту батарейки, а второй к контакту нагрузки, второй контакт нагрузки подключается к свободной клемме батарейки.

Читайте также:  Ebay другой способ оплаты что это


Рис. 4. Измерение силы тока в цепи батарейки

Если вы хотите проверить токовую нагрузку в обмотках трехфазного электродвигателя, измерительный прибор подключается поочередно в каждую фазу или если у вас есть три амперметра, можете использовать их одновременно. Для этого щупы подключаются одним концом к выводам обмоток в борно, а вторым, к питающему проводу соответствующей фазы.

Рис. 5. Измерение силы тока в цепи электродвигателя

Методы измерения

Мощность можно определить двумя способами: косвенным и прямым. В первом случае это делается при помощи амперметра и вольтметра, а также осциллографа. Измеряются значения напряжения и тока, а затем по формулам вычисляется мощность. Этот способ имеет один недостаток: величина мощности получается с некоторой погрешностью.

При использовании прямого метода используется специальный прибор-измеритель. Он называется ваттметром и показывает мгновенное значение мощности. У каждого из способов есть свои достоинства и недостатки. Какой из методов наиболее оптимален, определяет сам радиолюбитель. Если проектируется какое-либо изделие, которое отличается надежностью, то следует применять прямой метод. В других случаях рекомендуется воспользоваться косвенным методом.

Косвенный способ

Мощность в цепях постоянного и переменного токов определяется различными способами. Для каждого случая существуют свои законы и формулы. Однако мощность можно не рассчитывать, поскольку она указана на электрооборудовании. Расчет применяется только при проектировании устройств.

Для цепей постоянного тока нужно воспользоваться формулой: P = U * I. Ее можно вывести из закона Ома для участка или полной цепи. Если рассматривается полная цепь, то формула принимает другой вид с учетом ЭДС (е): P = e * I. Основные соотношения для расчета:

  1. Для участка электрической цепи: P = I * I * R = U * U / R.
  2. Для полной цепи, в которой подключен электродвигатель или выполняется зарядка аккумулятора (потребление): P = I * e = I * e — sqr (I) * Rвн = I * (e — (I * Rвн)).
  3. В цепи присутствует генератор или гальванический элемент (отдача): P = I * (e + (I * Rвн)).

Эти соотношения невозможно применять для цепей переменного тока, поскольку он подчиняется другим физическим законам. При измерении мощности в цепях переменного тока следует учитывать ее составляющие (активная, реактивная и полная). Если в цепи присутствует только резистор, то мощность считается активной. При наличии емкости или индуктивности — реактивной. Полная — сумма активной и реактивной составляющих.

Для вычисления первого типа физической величины применяется формула такого вида: Ра = I * U * cos (a). Значения тока и напряжения являются среднеквадратичными, а cos (a) — косинус угла между ними. Для определения реактивной мощности нужно воспользоваться следующей формулой: Qр = I * U * sin (a). Если нагрузка в цепи является индуктивной, то значение будет больше 0. В противном случае — меньше 0. Полная мощность Р определяется по следующему соотношению: P = Pa + Qp.

Суть работы цифровых приспособлений

Принцип действия этих измерителей мощности сложнее, чем у предыдущего типа. Причиной тому стало то, что мощность измеряется не напрямую. Основа работы устройства лежит в том, что сначала производятся предварительные измерения силы тока и напряжения. Для того чтобы их провести, нужно последовательно нагрузке подключить датчик тока, а параллельно — датчик напряжения. Выполнены эти агрегаты могут быть на базе термисторов или измерительных трансформаторов.

Мгновенные значения, полученные посредством аналого-цифрового преобразователя, передаются на микропроцессор, имеющийся у измерителя. В этом моменте производятся необходимые расчеты, благодаря которым можно получить значение активной и реактивной мощности. Итоговые результаты всех измерений выдаются на дисплей этого прибора, а также на дисплей тех устройств, которые подключены к нему. Оптическая мощность не измеряется этими видами приборов.

Бытовые приспособления

На сегодняшний день довольно распространенным и удобным прибором в быту стал ваттметр, при помощи которого можно измерить расход электрической энергии в доме. Данная модель является портативной версией устройства, при помощи которой измеряется мощность на отдельном участке. Благодаря этому становится возможным посчитать материальные расходы, которые уйдут на электроэнергию, если оставить работать сеть с такими же параметрами.

Данное приспособление довольно удобно, если необходимо распланировать расход средств, а также поможет провести оптимизацию некоторых участков домашней цепи.

Бытовые ваттметры

Этот агрегат относится к цифровой группе приборов. По своему внешнему виду он сильно напоминает адаптер или же переходник, который обладает дисплеем индикаторного типа. Кроме того, на корпусе расположено несколько кнопок, управляющих работой устройства. Основное предназначение этого прибора — регистрация и вывод на экран результатов потребления мощности любым бытовым прибором, который подключается к сети через него. Таких параметров довольно много, и это не только потребляемая мощность. Если ввести конкретный тариф, то устройство может даже показать количество материальных средств, которые будут уплачены за работу именно этого прибора. Оно может также фиксировать мощность излучения.

Источник

Оцените статью
Разные способы