При высокой температуре воздуха основным способом теплоотдачи является испарение

Физические механизмы теплоотдачи в условиях повышения температуры и влажности воздуха

Значение разных путей отдачи телом тепла в окружающую среду неодинаково в условиях покоя и при мышечной деятельности и меняется в зависимости от физических факторов внешней среды.

В условиях покоя с повышением внешней температуры сверх комфортной (около 18°С) усиливается теплопроведение с конвекцией. Только когда температура воздуха превышает 30°, т. е. приближается к температуре кожи, начинает усиливаться теплоотдача путем испарения пота. В жаркий день потери тепла проведением с конвекцией минимальны, так как мала разность температур между окружающим воздухом и кожей. Когда внешняя температура превышает температуру поверхности тела (около 33°), направление теплообмена меняется на противоположное, и поверхностные ткани тела получают тепло из окружающей среды. Солнечная радиация создает дополнительные термические нагрузки на организм.

В условиях работы основным путем отдачи тепла является испарение пота с поверхности кожи. По мере повышения внешней температуры роль этого механизма нарастает. Скорость ‘испарения пота определяется скоростью потообразования и некоторыми физическими характеристиками окружающей среды, среди которых наиболее существенна относительная влажность воздуха. Скорость испарения пота зависит от разности между влажностью кожи (Рк) и влажностью атмосферного воздуха (Ра) — Увеличение скорости потообразования вызывает повышение Рк и таким образом ускоряет испарение пота при данных внешних условиях. При высокой влажности воздуха градиент влажности между кожей и воздухом (Рк-Ра) уменьшается и испарение пота замедляется. Когда давление водяных паров в окружающем воздухе превышает 40 мм рт. ст., испарение пота с поверхности кожи равно нулю. Поэтому даже при очень высокой температуре воздуха, но при относительно небольшой его влажности спортсмен не испытывает таких трудностей, как при низкой температуре воздуха и высокой влажности. Около 5% теплоотдачи при субмаксимальных аэробных нагрузках происходит за счет испарения воды с воздухоносных путей. При повышении влажности окружающего воздуха этот механизм теплоотдачи также ослабевает.

Таким образом, повышенная температура окружающей среды уменьшает температурный градиент между воздухом и кожей, а также между кожей и ядром тела, создавая затруднения для теплоотдачи. Эти затруднения тем больше, чем ближе внешняя температура к температуре кожи. Аналогичным образом повышенная влажность окружающего воздуха создает барьер для потери тепла путем испарения. Одновременное повышение температуры и влажности воздуха может приводить к чрезмерному повышению температуры тела при напряженной и продолжительной спортивной деятельности.

Дата добавления: 2016-07-09 ; просмотров: 1140 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Физические механизмы теплоотдачи в условиях повышения температуры и влажности воздуха

Значение разных путей отдачи телом тепла в окружающую среду неодинаково в условиях покоя и при мышечной деятельности и меняется в зависимости от физических факторов внешней среды.

В условиях покоя с повышением внешней температуры сверх комфортной (около 18°С) усиливается теплопроведение с конвекцией. Только когда температура воздуха превышает 30°, т. е. приближается к температуре кожи, начинает усиливаться теплоотдача путем испарения пота. В жаркий день потери тепла проведением с конвекцией минимальны, так как мала разность температур между окружающим воздухом и кожей. Когда внешняя температура превышает температуру поверхности тела (около 33°), направление теплообмена меняется на противоположное, и поверхностные ткани тела получают тепло из окружающей среды. Солнечная радиация создает дополнительные термические нагрузки на организм.

В условиях работы основным путем отдачи тепла является испарение пота с поверхности кожи. По мере повышения внешней температуры роль этого механизма нарастает. Скорость ‘испарения пота определяется скоростью потообразования и некоторыми физическими характеристиками окружающей среды, среди которых наиболее существенна относительная влажность воздуха. Скорость испарения пота зависит от разности между влажностью кожи (Рк) и влажностью атмосферного воздуха (Ра) — Увеличение скорости потообразования вызывает повышение Рк и таким образом ускоряет испарение пота при данных внешних условиях. При высокой влажности воздуха градиент влажности между кожей и воздухом (Рк-Ра) уменьшается и испарение пота замедляется. Когда давление водяных паров в окружающем воздухе превышает 40 мм рт. ст., испарение пота с поверхности кожи равно нулю. Поэтому даже при очень высокой температуре воздуха, но при относительно небольшой его влажности спортсмен не испытывает таких трудностей, как при низкой температуре воздуха и высокой влажности. Около 5% теплоотдачи при субмаксимальных аэробных нагрузках происходит за счет испарения воды с воздухоносных путей. При повышении влажности окружающего воздуха этот механизм теплоотдачи также ослабевает.

Читайте также:  Как народным способом вылечить паховую грыжу

Таким образом, повышенная температура окружающей среды уменьшает температурный градиент между воздухом и кожей, а также между кожей и ядром тела, создавая затруднения для теплоотдачи. Эти затруднения тем больше, чем ближе внешняя температура к температуре кожи. Аналогичным образом повышенная влажность окружающего воздуха создает барьер для потери тепла путем испарения. Одновременное повышение температуры и влажности воздуха может приводить к чрезмерному повышению температуры тела при напряженной и продолжительной спортивной деятельности.

Источник

Испарение – как основной путь теплоотдачи. Значение испарение

Существуют следующие пути отдачи тепла организмом в окружающую среду: излучение, теплопроведение, конвекция и испарение.

Излучение — это способ отдачи тепла в окружающую среду поверхностью тела человека в виде электромагнитных волн инфракрасного диапазона (а = 5—20 мкм Излучением отдают тепло все тела, имеющие температуру выше абсолютного нуля (—273 °С). Поверхность тела человека также является излучателем тепла, но она в свою очередь может получать некоторое количество тепла за счет излучения окружающих предметов. Тепло отдается организмом тогда, когда температура стен, пола, потолка, а также поверхности оборудования, ограждающих устройств в помещении ниже температуры наружных слоев одежды (в среднем 27—28 °С) или открытой поверхности кожи

Теплопроведение — способ отдачи тепла, имеющий место при контакте, соприкосновении тела человека с другими физическими телами. Количество тепла, отдаваемого организмом в окружающую среду этим способом, пропорционально разнице средних температур контактирующих тел, площади контактирующих поверхностей, времени теплового контакта и теплопроводности контактирующего тела. Сухой воздух, жировая ткань характеризуются низкой теплопроводностью и являются теплоизоляторами. Использование одежды из тканей, содержащих большое число маленьких неподвижных «пузырьков» воздуха между волокнами (например, шерстяные ткани), дает возможность организму человека уменьшить рассеяние тепла путем теплопроводности

Конвекция — способ теплоотдачи организма, осуществляемый путем переноса тепла движущимися частицами воздуха (воды). Для рассеяния тепла конвекцией требуется обтекание поверхности тела потоком воздуха с более низкой температурой, чем температура кожи. При этом контактирующий с кожей слой воздуха нагревается, снижает свою плотность, поднимается и замещается более холодным и более плотным воздухом. В условиях, когда температура воздуха равна 20 °С, а относительная влажность — 40—60 %, тело взрослого человека рассеивает в окружающую среду путем теплопро-ведения и конвекции около 25—30 % тепла (базисная конвекция). Конвекция — передача тепла через воздушную среду. Если человек раздет, то в условиях неподвижного воздуха прилегающий к коже слой воздуха толщиной 4—8 мм нагревается путем проведения тепла. Нагрев более отдаленных слоев происходит вследствие естественной конвекции или движения воздуха (принудительная конвекция), при которых происходит замещение прилегающих к телу более теплых слоев воздуха более холодными. Когда человек пребывает в условиях подвижного воздуха, толщина указанного пограничного слоя уменьшается до 1 мм и менее, а теплоотдача возрастает в несколько раз.

Теплоотдача конвекцией увеличивается также с ростом барометрического давления. Относительно небольшая отдача тепла проведением и конвекцией происходит также через поверхность дыхательных путей, если вдыхаемый воздух имеет более низкую, чем тело, температуру. Теплоотдача конвекцией прекращается, если величина температуры окружающего воздуха достигает величины температуры кожи. В случае, когда она повышается еще больше, происходит не отдача, а восприятие конвекционного тепла

Теплоотдача путем испарения — это способ рассеяния организмом тепла в окружающую среду за счет его затраты на испарение пота или влаги с поверхности кожи и влаги со слизистых оболочек дыхательных путей («влажная» теплоотдача). У человека постоянно осуществляется выделение пота потовыми железами кожи («ощутимая», или железистая, потеря воды), увлажняются слизистые оболочки дыхательных путей («неощутимая» потеря воды) (рис. 13.4). При этом «ощутимая» потеря воды организмом оказывает более существенное влияние на общее количество отдаваемого путем испарения тепла, чем «неощутимая». При температуре внешней среды около 20 «С испарение влаги составляет около 36 г/ч.

Читайте также:  Ушная пробка способ удаления

Испарение — основной путь теплоотдачи при повышенной температуре воздуха, в особенности, когда температура воздуха и окружающих предметов близка к температуре кожи, что затрудняет или исключает теплоотдачу излучением и конвекцией. Теплоотдача испарением происходит потому, что при испарении 1 г воды теряется около 2,5 кДж (0,6 ккал) тепла. Испарение влаги из организма происходит как с поверхности кожи, так и через дыхательные пути.

Источник

При высокой температуре воздуха основным способом теплоотдачи является испарение

13. ТЕПЛООТДАЧА ЧЕЛОВЕКА

Теплоотдача — это теплообмен между поверхностью тела человека и окружающей средой. В сложном процессе сохранения теплового баланса организма регуляция теплоотдачи имеет большое значение. Применительно к физиологии теплообмена теплоотдача рассматривается как переход теплоты, освобождаемой в процессах жизнедеятельности, из организма в окружающую’ среду. Теплоотдача осуществляется в основном излучением, конвекцией, кондукцией, испарением. В условиях теплового комфорта и охлаждения наибольшую долю занимают потери тепла радиацией и конвекцией (73—88% общих теплопотерь) <1.5, 1.6>. В условиях, вызывающих перегревание организма, преобладает теплоотдача испарением.

Радиационный теплообмен. В любых условиях жизнедеятельности человека между ним и окружающими телами происходит теплообмен путем инфракрасного излучения (радиационный теплообмен). Человек в процессе своей жизнедеятельности часто подвергается нагревающему воздействию инфракрасных излучений с разными спектральными характеристиками: от солнца, нагретой поверхности земли, зданий, отопительных приборов, и т. д. В производственной деятельности с радиационным нагреванием человек сталкивается, например, в горячих цехах металлургической, стекольной, пищевой промышленности и др.

Излучением человек отдает тепло в случаях, когда температура ограждений, окружающих человека, ниже температуры поверхности тела. В окружающей человека среде часто встречаются поверхности, имеющие температуру значительно ниже температуры тела (холодные стены, застекленные поверхности). При этом потери тепла излучением могут быть причиной местного или общего охлаждения человека. Радиационному охлаждению подвергаются строительные рабочие, рабочие, занятые на транспорте, обслуживающие холодильники и др.

Теплоотдача излучением в комфортных метеорологических, условиях составляет 43,8—59,1% общих теплопотерь. При наличии в помещении ограждений с температурой более низкой, чем температура воздуха, удельный вес теплопотерь человека излучением возрастает и может достигать 71%. Этот способ охлаждения и нагревания оказывает более глубокое воздействие на> организм, чем конвекционный (1.5J. Передача тепла излучением* пропорциональна разности четвертых степеней абсолютных температур поверхностей тела человека и окружающих предметов. При небольшой разности температур, что практически наблюдается в реальных условиях жизнедеятельности человека, уравнение для определения потерь тепла радиацией (Sрад, Вт, можно» записать так:

где а рад — коэффициент излучения, Вт/(м2°С); Spaд — площадь поверхности , тела человека, участвующей в радиационном теплообмене, м2; t1 — температура поверхности тела (одежды) человека, °С; t2 — температура поверхности окружающих предметов, °С.

Коэффициент излучения а рад при известных значениях t1 и t2 может быть определен по табл. 1.3.

Поверхность тела человека, участвующая в радиационном Теплообмене, меньше всей поверхности тела, так как некоторые части тела взаимно облучаются и не принимают участия в обмене. Поверхность тела, участвующая в обмене тепла, может составлять 71—95% всей поверхности тела человека. Для людей, находящихся в положении стоя или сидя, коэффициент эффективности излучения с поверхности тела составляет 0,71; в процессе движения человека он может увеличиваться до 0,95.

Потери тепла радиацией с поверхности тела одетого человека Qрад, Вт, могут быть определены также по уравнению [1.4]

Конвекционный теплообмен. Передача тепла конвекцией осуществляется с поверхности тела человека (или одежды) движущемуся вокруг него (нее) воздуху. Различают конвекционный теплообмен свободный (обусловленный разностью температур поверхности тела и воздуха) и принудительный (под влиянием движения воздуха). По отношению к общим теплопотерям в условиях теплового комфорта теплоотдача конвекцией составляет 20—30% 1. Существенно возрастают потери тепла конвекцией в условиях ветра.

Читайте также:  Способ для быстрого чтения

С использованием суммарного значения коэффициента теплоотдачи ( а рад.конв) могут быть определены значения радиационно-конвективных теплопотерь (Орад.конв) по уравнению

Орад.конв = Орад.конв (tод—tв).

Кондукционный теплообмен. Теплоотдача от поверхности тела человека к соприкасающимся с ним твердым предметам осуществляется проведением (кондукцией). Потери тепла кондукцией в соответствии с законом Фурье могут быть определены по уравнению

Как видно из уравнения, отдача тепла кондукцией тем больше, чем ниже температура предмета, с которым соприкасается человек, чем больше поверхность соприкосновения и меньше толщина пакета материалов одежды.

В обычных условиях удельный вес потерь тепла кондукцией невелик, так как коэффициент теплопроводности неподвижного воздуха незначителен. В этом случае человек теряет тепло кондукцией лишь с поверхности стоп, площадь которых составляет 3% площади поверхности тела. Но иногда (в кабинах сельскохозяйственных машин, башенных кранов, экскаваторов и т. д.) площадь соприкосновения с холодными стенами может быть довольно большой. Кроме того, помимо размера контактирующей поверхности имеет значение и подвергающийся охлаждению участок тела (стопы, поясницы, плеч и т. д.).

Теплоотдача испарением. Важным способом теплоотдачи, особенно при высокой температуре воздуха и выполнении человеком физической работы, является испарение диффузионной влаги и пота. В условиях теплового комфорта и охлаждения человек, находящийся в состоянии относительного физического покоя, теряет влагу путем диффузии (неощутимой перспирации) с поверхности кожи и верхних дыхательных путей. За счет этого человек отдает в окружающую среду 23—27% общего тепла, при этом 1/3 потерь приходится на долю тепла испарением с верхних дыхательных путей и 2/3 — с поверхности кожи. На влагопотери путем диффузии оказывает влияние давлёние водяных паров в воздухе, окружающем человека. Поскольку в земных условиях изменение давления водяных паров невелико, влагопотери вследствие испарения диффузионной влаги принято считать относительно постоянными (30—60 г/ч). Несколько колеблются они лишь в зависимости от кровоснабжения кожи.

Потери тепла путем испарения диффузионной влаги с поверхности кожи Qисп.д, Вт, могут быть определены по уравнению [1.4]

Теплоотдача при дыхании. Потери тепла вследствие нагревания вдыхаемого воздуха составляют небольшую долю по сравнению с другими видами потерь тепла, однако с увеличением энерготрат и со снижением температуры воздуха теплопотери этого вида увеличиваются.

Потери тепла вследствие нагревания вдыхаемого воздуха Qдых.н, Вт, могут быть определены по уравнению

Qдых.н=0,00 12Qэ.t (34—tв),

где 34 — температура выдыхаемого воздуха, °С (в комфортных условиях) .

В заключение следует отметить, что приведенные выше уравнения для расчета составляющих теплового баланса позволяют лишь ориентировочно оценить теплообмен человека с окружающей средой. Существует также ряд уравнений (эмпирических и аналитических), предложенных разными авторами и позволяющих определить необходимую для расчета теплового сопротивления одежды величину радиационно-конвективных теплопотерь (фрэд конв).

В’ связи с этим в исследованиях наряду с расчетными применяются экспериментальные методы оценки теплообмена организма. К ним относятся методы определения общих влагопотерь человека и потерь влаги испарением путем взвешивания раздетого b одетого человека, а также определения радиационно-конвективных теплопотерь с помощью тепломерных датчиков, размещаемых на поверхности тела.

Помимо прямых методов оценки теплообмена человека используются косвенные, отражающие влияние на организм разницы между теплоотдачей и теплопродукцией в единицу времени в конкретных условиях жизнедеятельности. Это соотношение определяет тепловое состояние человека, сохранение которого на оптимальном или допустимом уровне является одной из главных функций одежды. В связи с этим показатели и критерии теплового состояния человека служат физиологической основой как проектирования одежды, так и ее оценки.

1 1. Иванов К. П. Основные принципы регуляции температурного пзмео-стаза/В кн. Физиология терморегуляции. Л., 1984. С. 113—137.

1.2 Иванов К. П. Регуляция температурного гомеостаза у животных и человека. Ашхабад, 1982.

1 3 Беркович Е. М. Энергетический обмен в норме и патологии. М., 1964.

1.4. Fanger Р. О. Thermal Comfort. Copenhagen, 1970.

k5. Малышева A. E. Гигиенические вопросы радиационного теплообмена человека с окружающей средой. М., 1963.

1 6. Колесников П. А. Теплозащитные свойства одежды. М., 1965

1 7. Витте Н. К- Тепловой обмен человека и его гигиеническое значение. Киев, 1956

Источник

Оцените статью
Разные способы