Электролитическое получение алюминия
Алюминий получают путем электролиза глинозема, растворенного в расплавленном электролите, основным компонентом которого является криолит. В чистом криолите Na3AlF6(3NaF • AlF3) отношение NaF : AlF3 равно 3, для экономии электроэнергии необходимо при электролизе иметь это отношение в пределах 2,6—2,8, поэтому к криолиту добавляют фтористый алюминий AlF3. Кроме того, для снижения температуры плавления в электролит добавляют немного CaF2, MgF2 и иногда NaCl. Содержание основных компонентов в промышленном электролите находится в следующих пределах, %: Na3AlF6 75—90; AlF3 5—12; MgF2 2—5; CaF2 2—4; Al2O3 2—10. При повышении содержания Al2O3 более 10 % резко повышается тугоплавкость электролита, при содержании менее 1,3 % нарушается нормальный режим электролиза.
Электролизная ванна или электролизер, где проводят электролиз, имеет в плане прямоугольную форму. Схема поперечного разреза ванны показана на рис. 247. Кожух 1 из стальных листов охватывает стены ванны, а у больших ванн выполнен с днищем. Внутри имеется слой шамота 2 и далее стены выложены угольными плитами 4, а под образован подовыми угольными блоками 3. Ванна глубиной 0,5—0,6 м заполнена электролитом и находящимся под ним слоем жидкого алюминия.
Угольный анод 6 (иногда их несколько) подвешен на стальных стержнях 8 так, что его нижний конец погружен в электролит, через стержни 8 к аноду подается ток от шин 7.
Мощность электролизера (ванны), определяемая силой подводимого к ней тока, изменяется от 30 кА у ванн малой мощности до 250 кА у ванн большой мощности. Поскольку допустимая удельная плотность проходящего через анод тока составляет 0,65—1,0 А/см 2 , при росте мощности ванн увеличивают площадь анода; размеры поперечного сечения анода мощных ванн достигают 2,8×9 м, размеры ванны (внутри) — 3,8×10 м.
Существующие ванны различаются мощностью и устройством анода: ванны с одним самообжигающимся анодом и верхним токоподводом, с таким же анодом и боковым токоподводом и ванны с анодом из обожженных блоков. Ванна с самообжигающимся анодом и верхним подводом тока показана на рис. 248, а. Анод прямоугольного сечения является непрерывнонаращиваемым. Его кожух сделан из стального листа, в кожух сверху загружают брикеты из углеродистой электродной массы (нефтяной кокс с каменноугольным пеком). Вверху масса плавится, а в нижней части кожуха, где высокие температуры, она спекается, коксуется и превращается в твердый блок. В него запекаются погруженные в электродную массу на разную глубину стальные штыри 7, расположенные в два—четыре ряда вдоль ванны. Эти стержни служат для подвода тока к аноду и для его удержания над ванной, кожух анода крепится над ванной отдельно. В процессе сгорания анода наиболее глубоко расположенные штыри поочередно выдергивают из затвердевшей массы и закрепляют на более высоком уровне, через некоторое время они спекаются с твердеющей массой.
По мере сгорания нижней части анода его с помощью специального механизма опускают, при этом анод скользит внутри кожуха вниз. К нижней части кожуха анода крепится газосборный колокол, предназначенный для улавливания выделяющихся вокруг анода газов.
Электролизные ванны с предварительно обожженными анодами (рис. 248, б) имеют анодный узел, составленный из нескольких (до 20 и более) угольных или графитированных блоков, расположенных в два ряда. В каждом блоке закреплены четыре стальных ниппеля 9, соединенных со штангой 77; это устройство служит для подвода тока и для подвески блока. Сгоревшие блоки заменяют новыми. Над ванной установлен газоулавливающий короб.
Использование обожженных анодов позволило увеличить единичную мощность ванн и сильно сократить выделение вредных канцерогенных веществ, которые образуются при коксовании пека самообжигающихся электродов.
Электролизные ванны размещают в цехе в ряд — по несколько десятков ванн в ряду.
Электролиз ведут при напряжении 4—4,3 В и, как отмечалось, при удельной плотности тока, проходящего через анод, равной 0,65—1,0 А/см 2 . Толщина слоя электролита в ванне составляет 150—250 мм. Температуру ванны поддерживают в пределах 950—970 °С за счет тепла, выделяющегося при прохождении постоянного гока через электролит. Такие температуры имеют место под анодом, а на границе с воздухом образуется корка затвердевшего электролита рис. 247, 9, а у стен ванны — затвердевший слой электролита 10 (гарнисаж).
Необходимая температура ванны, т.е. выделение в слое электролита необходимого количества тепла, обеспечивается при определенном электросопротивлении слоя электролита. Такого электросопротивления достигают, поддерживая в заданных пределах состав электролита и толщину его токопроводящего слоя, т.е. расстояния между анодом и слоем жидкого алюминия в пределах 40—60 мм (увеличение, например, этого расстояния, т.е. электросопротивления слоя электролита, вызывает увеличение выделения тепла при прохождении тока и, соответственно, перегрев электролита).
При приложении напряжения к катоду и аноду составляющие жидкого электролита подвергаются электролитической диссоциации, и расплав состоит из многочисленных катионов и анионов. Состав электролита подобран так, что в соответствии со значениями потенциалов разряда на электродах могут разряжаться только катионы Al 3+ и анионы О 2- , образующиеся при диссоциации Al2O3 в электролите. Соответственно электрохимический процесс на электродах описывается следующими уравнениями:
на катоде 2Al 3+ + 6е → 2Al;
на аноде 3О 2- — 6е → 3O.
Разряжающийся на катоде алюминий накапливается на подине ванны под слоем электролита. Выделяющийся на аноде кислород взаимодействует с углеродом анода с образованием газов СО и СO2, т.е. при этом окисляется низ анода, в связи с чем анод периодически опускают. Газы СО и СO2 выходят из-под анодов вдоль их боковых поверхностей, они содержат выделяющиеся из электролита токсичные фтористые соединения и глиноземную пыль (из самообжигающихся анодов в них также попадают вредные смолистые возгоны); эти газы улавливают и очищают от пыли и фтористых соединений.
По ходу процесса в ванны периодически загружают глинозем; контролируют состав электролита, вводя корректирующие добавки; с помощью регуляторов поддерживают оптимальное расстояние между анодами и жидким алюминием (в пределах 40—50 мм). Глинозем загружают в ванны сверху, пробивая для этого корку спекшегося электролита (рис. 247, 9) с помощью передвигающихся вдоль ванн машин.
Жидкий алюминий извлекают из ванн один раз в сутки или через 2—3 сут с помощью вакуум-ковшей. Вакуум-ковш представляет собой (рис. 249) вмещающую 1,5—5 т алюминия футерованную шамотом емкость, в которой создается разряжение
70 кПа. Соединенную с патрубком 6 ковша заборную трубку погружают сверху в слой жидкого алюминия в ванне и за счет разрежения алюминий засасывается в ковш.
Выделяющиеся анодные газы вначале направляют в горелки, где сжигают СО и возгоны смолы, а затем в газоочистку, где улавливают пыль и фтористые соединения.
Производительность современных электролизных ванн составляет 500—1200 кг алюминия в сутки. Для получения 1 т алюминия расходуется
1,95 т глинозема,
25 кг криолита, 25 кг фтористого алюминия, 0,5—0,6 т анодной массы, 14—16 МВт • ч электроэнергии.
Источник
Электролизная ванна для получения алюминия
Владельцы патента RU 2415974:
Изобретение относится к электролизной ванне для получения алюминия. Ванна содержит кожух, по меньшей мере один катодный блок, расположенный по меньшей мере частично в кожухе, по меньшей мере один анод, подвешенный над ванной и погруженный в верхнюю часть электролизной ванны, изоляцию, покрывающую по меньшей мере частично внутреннюю поверхность кожуха, расположенную между катодным блоком и кожухом и выполненную по меньшей мере частично из блоков на основе углерода, имеющего теплопроводность ниже 1 Вт/м/К, предпочтительнее менее 0,3 Вт/м/К, кожух и элементы, помещенные в нем, ограничивают тигель, который служит для приема электролизного расплава в контакте с катодным блоком. Блоки на основе углерода имеют плотность в пределах 0,03 и 0,8 г/см 3 , предпочтительнее в пределах 0,1 и 0,6 г/см 3 . Обеспечивается повышение надежности за счет исключения разрушения расплавом, устранения или уменьшения миграции фторидов и улучшения теплоизоляции. 5 з.п. ф-лы, 3 ил.
Изобретение относится к электролизной ванне для получения алюминия.
На фиг.1 описывается электролизная ванна, традиционно используемая для электролиза алюминия. Она включает в себя:
— стальную наружную оболочку, называемую кожухом 2,
— изоляцию 3, расположенную внутри кожуха 2, состоящую из слоя изоляционных кирпичей 4 и слоя огнеупорных кирпичей 5, которые защищают дно и частично простираются вверх по сторонам кожуха 2, как это видно, в частности, на фиг.2,
— катод 6, образованный несколькими катодными блоками из углерода или графита, расположенными на дне кожуха 2 и оснащенными токособирательными шинами 7,
— боковые плитки 8 на основе углерода или карбида кремния, расположенные на уровне верхней боковой части кожуха 2 на уровне электролизного расплава и служащие для рассеяния тепловой энергии,
— набивную массу 9, образующую уплотнение между изоляцией 3 и/или боковыми плитками 8 и катодом 6,
— тигель, ограниченный элементами, находящимися в кожухе 2, и служащий для приема электролизного расплава 10,
— анод 11, выполненный по меньшей мере из одного углеродного блока, подвешенный над кожухом 2 и служащий для создания контакта с электролизным расплавом в рабочем положении ванны 1.
Точнее, слой изоляционных кирпичей 4 состоит, как правило, из одного или нескольких подслоев изоляционных кирпичей толщиной 65 мм каждый. Равным образом слой огнеупорных кирпичей 5 состоит, как правило, из одного или нескольких подслоев огнеупорных кирпичей толщиной 65 мм каждый.
Электролизный расплав состоит главным образом из расплавленного криолита (Na3AlF6 или 3NaF-AlF3) или алюмофтористого натрия. В соответствии с требованиями производства для изменения состава расплава вносят добавки фтористого натрия (NaF) или фтористого алюминия (AlF3). Могут быть использованы также другие добавки (CaF2, LiF,…).
Во время электролиза на поверхности катода 6 в контакте с электролизным расплавом образуется жидкий алюминий 12. Ток поочередно проходит через анод 11, электролизный расплав, алюминий 12, катод 6 и покидает ванну по токособирательным шинам 7.
Для производства алюминия в электролизный расплав загружают глинозем (Al2O3) для получения жидкого алюминия 12, который под действием силы тяжести осаждается на катоде 6.
Полученный таким образом жидкий алюминий 12 периодически удаляют из ванны, а в расплав регулярно добавляют глинозем.
В связи с поддержанием температуры расплава по эффекту Джоуля, связанному с прохождением тока, в диапазоне между 950°С и 975°С весь комплекс требуется изолировать при помощи изоляционных кирпичей 4, расположенных по внутренней поверхности кожуха, и огнеупорными кирпичами 6, расположенными между изоляционными кирпичами 4 и катодными блоками 6.
Эта изоляция 3 обеспечивает одновременно теплоизоляцию и электроизоляцию, необходимые для работы электролизной ванны 1.
Эта изоляция может деградировать в связи с двумя процессами. Первый процесс проявляется во время разогрева и ввода в эксплуатацию новой электролизной ванны. Плохая герметичность тигля связана со щелями и трещинами, которые могут появиться на уровне катода 6 и/или набивной массы 9. Эти каналы позволяют электролиту и жидкому алюминию проходить под катодные блоки 6, попадать к изоляционному материалу 3, расположенному на дне электролизной ванны 1, и затем быстро разрушать этот изоляционный материал 3.
Этот первый механизм деградации проявляется очень быстро после первого пуска ванны. Его можно избежать путем создания тщательного уплотнения набивной массой 9 вокруг катода 6, предварительного выверенного подогрева, позволяющего контролировать варку набивной массы и пуск, позволяющий поддерживать герметичность тигля.
Второй процесс деградации проявляется во время нормальной работы ванны, когда компоненты электролизного расплава, такие как фториды и натрий, проникают сквозь катодные блоки 6 в изоляционный материал 3.
Этот механизм представляет собой явление долговременного старения и присущ технологии вышеописанной электролизной ванны.
Ниже явление проникновения расплава в катод 6 описывается детально.
В книге “Cathodes in аluminium electrolysis”, Aluminium-Verlag ISBN 3-87017-230-4, 1994, p.127, M.Sorie et H.A.Oye показано, что углерод не смачивается жидким алюминием и с трудом смачивается расплавленными фторидами. Таким образом, даже при высокой пористости или промокаемости проникновение расплава в катод остается сложным, когда он выполнен из углерода или графита.
Такое проникновение расплава возможно лишь после диффузии натрия (Na) в катоде. Эта диффузия натрия выражается следующей реакцией:
Диффузии натрия, то есть смещению реакции вправо, способствует необходимая для процесса электролиза сильная электрическая поляризация.
Таким образом, натрий диффундирует внедрением в углеродную матрицу катода, то есть в его скелет и/или его пористость.
Эта диффузия внедрением вызывает расширение катодных блоков и приводит к началу проникновения электролизного расплава вследствие смачивания и капиллярности в углеродную матрицу.
Кристаллизация расплава охлаждением вызывает механические напряжения сжатия, способные привести к образованию трещин в катодных блоках. С целью избежать такого явления под катодными блоками добровольно устанавливают изотерму солидус расплава порядка 888°С для этого типа расплава, которая призвана обеспечить, чтобы весь проникающий в катод электролизный расплав остался в жидком состоянии.
Жидкий электролизный расплав проходит катод и вступает в контакт с изоляцией 3, расположенной на дне электролизной ванны непосредственно под катодом 6.
В результате определенных неуточняемых здесь реакций состав проникающего в катод расплава обогащается фтористым натрием.
Теперь расплав вступает в реакцию с материалами, используемыми для создания изоляционного слоя. Натрий и фториды расплава разъедают одновременно кремнезем и глинозем, содержащиеся в составляющих изоляцию 3 изоляционных 4 и огнеупорных кирпичах 5. Кроме того, жидкий алюминий вступает в реакцию с кремнеземом этих кирпичей. Наконец, некоторые другие компоненты электролизного расплава, такие как фтористый литий или фтористый кальций реагируют с изоляцией 3, а также с металлическим кожухом 2, так что они разрушаются.
Деградация изоляционного слоя снижает свойства теплоизоляции и приводит к возникновению напряжений сжатия, так как продукты реакции компонентов расплава с изоляцией составляют больший объем, чем материалы, используемые изначально для создания изоляции.
Эти напряжения создают вертикальное выталкивание катодных блоков, направленное снизу вверх, а также сжатие изоляционного материала.
Выталкивание катодных блоков вверх вызывает их изгиб с риском разрушения их с течением времени.
Сжатие изоляционного материала приводит к увеличению его теплопроводности и способствует таким образом снижению теплоизоляции. Такое ухудшение свойств теплоизоляции затрудняет контроль температуры электролизного расплава и приводит к охлаждению катода, вызывая тем самым появление твердых шламов на его поверхности в контакте с расплавом.
Все эти явления приводят к снижению кпд ванны и ее разрушению.
Кроме того, присутствие фторидов, проникающих из ванны в изоляцию, создает проблему загрязнения окружающей среды во время демонтажа отработавших электролизных ванн, так как демонтируемый материал предназначен в отвал. В действительности фториды, такие как фтористый натрий (NaF), находящиеся изначально в электролизном расплаве, растворимы в воде и могут быть унесены струйным охлаждением.
Поэтому необходимо пассивировать эти отходы путем дорогостоящей обработки, прежде чем удалить их с уверенностью, что они безопасны.
В целях устранения этих недостатков различные материалы были использованы для создания барьеров от проникновения 13, назначением которых является воспрепятствовать, снизить или отсрочить перенос натрия, алюминия и электролизного расплава в слой изоляции.
Барьеры 13 от проникновения помещают, как правило, между катодными блоками 6 и слоем огнеупорных кирпичей 5, образующих часть изоляции 3 на дне электролизной ванны 1, как это показано более детально на фиг.2.
В статье “Penetration barriers in the cathode of Hall-Héroult cells”, Aluminium, 68, n.1, Jahrgang 1992, p.64, K. Grjotheim et H.Kvande излагаются, в частности, преимущества и недостатки различных используемых методов.
Так, известные барьеры против проникновения осуществляются на основе:
огнеупорных кирпичей и плиток,
порошков, содержащих или не содержащих глинозем,
Использование стальных пластин обеспечивает хорошую защиту от натрия, но такие пластины поражают другие компонентами электролизного расплава.
Листы графита позволяют обеспечить великолепную защиту от миграции криолита и продуктов его распада и компонентов расплава, но они неэффективны против натрия. Поэтому листы графита обычно применяют вместе со стальными пластинами.
Однако такое сочетание не позволяет обеспечить тепло- и электроизоляцию под катодными блоками. Необходимо также размещать изоляцию под созданным таким образом барьером против проникновения, обычно в форме кирпичей небольших размеров.
Использование огнеупорных кирпичей и плиток остается самым распространенным методом. Между тем, даже если этот вид барьера преграждает проникновение жидких веществ, он не защищает от диффузии твердых фторидов. Они могут таким образом попадать в продукты набивной массы, удаляемой при демонтаже, то есть при удалении футеровки стен отработавшей ванны.
Кроме того, использование кирпичей или плиток небольших размеров требует обычно укладки многих тысяч элементов, необходимых для создания изоляции одной ванны.
Традиционная ванна требует обычно укладки 10000 кирпичей размером порядка 65×110×220 мм и плотностью, примерно равной 2 г/см 3 для самых плотных, что создает изоляционный слой примерно в 20 тонн.
Помимо большого веса, очень важным фактором является также время, требующееся для укладки и уплотнения кирпичей.
Что касается использования порошков, то оно представляется опасным, так как порошкообразные материалы при укладке выделяют очень мелкие частицы. Кроме того, оно затруднительно, так как слой порошка необходимо подвергать по меньшей мере одноразовой вибрации внутри ванны, чтобы повысить уплотнение слоя.
Более того, изначально плохое уплотнение приводит к появлению полостей в катоде в результате вибраций ванны во время работы, при этом полости заполняются со временем, расплавленным при высоких температурах электролизным расплавом.
И, наконец, если теплопроводность порошкового слоя после вибрации считается приемлемой, она значительно ухудшается после реакции с расплавом.
Что касается использования стекла, то вместе с расплавом оно образует чрезвычайно вязкую, то есть обладающую низкой промокаемостью смесь. Однако могут быть созданы материалы с низкой вязкостью типа оксифтористых силикатов, которые изменят эффективность процесса обработки.
Наконец, укладка огнеупорного бетона в ванне предполагает стадию смешения при помощи специальных смесителей, стадию вибрации материала в ванне и стадию тепловой обработки сушкой. Осуществление такой изоляции представляется таким образом относительно сложным.
Таким образом, различные указанные методы позволяют бороться, в большинстве случаев частично или сложно, с деградацией изоляционного слоя и против миграции фторидов.
Необходимо также сочетать несколько слоев различных материалов в целях удовлетворения двойного требования защиты изоляционного слоя и теплоизоляции ванны.
Следовательно, задачей настоящего изобретения является предложить изоляционный материал, который не подвергается деградации электролизным расплавом, позволяет устранить или уменьшить миграцию фторидов, удовлетворить предъявляемые условия к теплоизоляции и реализация которого представляется менее сложной.
Для решения этой задачи электролизная ванна согласно изобретению для получения алюминия включает:
по меньшей мере один катодный блок, расположенный по меньшей мере частично в кожухе,
по меньшей мере один анод, подвешенный над ванной и погруженный в верхнюю часть электролизной ванны,
изоляцию, покрывающую по меньшей мере частично внутреннюю поверхность кожуха 2 и расположенную между катодным блоком и кожухом,
кожух и элементы, которые он содержит, ограничивающие тигель, который служит для приема электролизного расплава в контакте с катодным блоком,
отличается тем, что изоляция выполнена, по меньшей мере частично, при помощи блоков на основе углерода, имеющего теплопроводность ниже 1 Вт/м/К.
В связи с наличием токособирательных шин ток не попадает в зону, расположенную под катодными блоками. Эта зона в контакте с расположенной на дне ванны изоляцией не подвержена в данном случае электрической поляризации.
Как указано выше, отсутствие электрической поляризации препятствует диффузии натрия в образованной таким образом углеродной изоляции. Кроме того, оно препятствует также образованию твердого алюминия под катодом, который может быть образован лишь катодным восстановлением.
Однако присутствие алюминия и электрической поляризации представляет собой два элемента, необходимых для диффузии натрия в углеродной матрице, как было пояснено выше и как это видно в вышеуказанной химической реакции. Так как диффузия натрия является необходимой для проникновения электролизного расплава в образующие изоляцию блоки на основе углерода, последние остаются не проницаемыми для электролизного расплава.
Таким образом, под катодными блоками, куда не проникает ток, так как электрический потенциал постоянный, изоляционный слой не может деградировать.
Более того, укладка такой изоляции представляет меньше сложностей, так как не требуется стадия вибрации или предварительной обработки внутри ванны.
Наконец, теплопроводность изоляционных блоков позволяет обеспечить тепловую стабильность и контроль процесса электролиза.
Согласно одному из признаков изобретения изоляционные блоки на основе углерода имеют плотность в пределах 0,03 и 0,8 г/см 3 , предпочтительно в пределах 0,1 и 0,6 г/см 3 .
Низкая объемная плотность блоков обеспечивает небольшой вес изоляционного слоя, причем этот вес может быть снижен до 4 тонн по сравнению с традиционным изоляционным слоем весом в 20 тонн, состоящим из кирпичей. Кроме того, эта низкая объемная плотность позволяет получить высокую жаропрочность изоляции.
Предпочтительно теплопроводность блоков на основе углерода ниже 0,3 Вт/м/К.
Преимущественно блоки на основе углерода выполнены в форме плит размерами порядка 120×440×880 мм.
Эти размеры позволяют получить хорошее сочетание простоты обслуживания различных блоков с прокладкой изоляции.
Использование таких блоков позволяет, кроме того, значительно сократить число элементов, составляющих изоляционный слой, так как необходимо лишь 310 блоков вместо 10000 кирпичей, используемых для создания традиционной изоляции.
Толщина, обусловленная минимальной жаропрочностью изоляции, достаточно невысокая, что позволяет увеличить объем электролизного расплава или толщину катодного блока.
Согласно другому признаку изобретения соединение между плитками осуществляют при помощи углеродных клеев или углеродных цементов.
Образованные таким образом соединения устойчивы, как и блоки на основе углерода, к воздействию различных компонентов расплава.
Предпочтительно блоки выполнены на основе углеродной пены.
Использование пены позволяет упростить производство, изготовляя блоки с требуемыми характеристиками, как по показателям сопротивления, так и по тепловым свойствам.
Во всяком случае изобретение будет более понятным при помощи нижеследующего описания со ссылкой на прилагаемый схематический чертеж, на котором в виде неограничительного примера представлены несколько вариантов осуществления указанной электролизной ванны. Показаны:
Фиг.1 — вид в поперечном разрезе электролизной ванны согласно существующему уровню техники;
Фиг.2 — увеличенный вид изоляционной части ванны;
Фиг.3 — вид, соответствующий фиг.1, электролизной ванны согласно изобретению.
Обозначенные позициями 1-12 элементы, относящиеся к фиг.3, соответствуют по ходу описания элементам, помеченным такими же позициями на фиг.1 и 2.
На фиг.3 представлена электролизная ванна согласно изобретению. Эта ванна существенно отличается от ванны существующего уровня техники, представленного в преамбуле, тем, что изоляция 3 не состоит больше из комплекта изоляционных 4 и огнеупорных кирпичей 5 и барьера против проникновения 13, а состоит из блоков 14 на основе углерода с низкой теплопроводностью.
Эти блоки 14 образованы, например, на основе углеродной пены, теплопроводность которой ниже 1 Вт/м/К, предпочтительно ниже 0,3 Вт/м/К, и плотность которой ниже 0,8 г/см 3 , предпочтительно ниже 0,6 г/см 3 .
Блоки имеют, например, толщину порядка 120 мм, ширину 440 мм и длину 880 мм.
Клеевые или цементные соединения на основе углерода позволяют обеспечить герметичность между блоками, так как этот вид соединений не реагирует с веществами, содержащимися в электролизном расплаве.
Такие цементы известны профессионалу и соответствуют цементам, используемым для обеспечения соединений между различными боковыми плитами.
Кроме того, составляющие изоляцию блоки 14 могут быть изолированы от катодных блоков 6 слоем глинозема или другого порошкообразного вещества или слоем набивной массы. Этот слой может облегчить укладку катодных блоков и их выравнивание в ванне.
Согласно другому варианту осуществления изоляция 3 образована двумя слоями изоляционных кирпичей толщиной 65 мм каждый, которые уложены поверх слоя блоков толщиной 130 мм.
В случае, если изоляционные кирпичи или блоки имеют теплопроводность, равную соответственно 0,15 Вт/м/К и 0,30 Вт/м/К, жаропрочность изоляции примерно равна 1300 (произвольная единица — п.е.).
В целях сравнения жаропрочность традиционной изоляции, состоящей из двух слоев традиционных изоляционных кирпичей, поверх которых уложены два слоя огнеупорных кирпичей, имеющих каждый из четырех слоев толщину 65 мм, составляет примерно 985 п.е.
Как это видно из предшествующих результатов, замена двух слоев огнеупорных кирпичей одним слоем блоков эквивалентной толщины позволяет улучшить жаропрочность изоляции примерно на 30%.
Согласно другому варианту осуществления традиционная жаропрочность 985 п.е. может быть достигнута при использовании двух слоев изоляционных кирпичей, таких как описаны выше, на которых уложен один слой блоков толщиной примерно равной 36 мм, при этом блоки, как и прежде, имеют теплопроводность 0,30 Вт/м/К.
Следует отметить, что в данном случае одинаковая жаропрочность может быть достигнута изоляцией толщиной 166 мм вместо 260 мм.
Такое уменьшение толщины изоляции 3 позволяет увеличить толщину катодных блоков 6 или увеличить объем электролизного расплава.
Использование лишь одного слоя блоков 14 на основе углерода толщиной, примерно равной 197 мм, и теплопроводностью, равной 0,2 Вт/м/К, позволяет получить жаропрочность, эквивалентную традиционным изоляциям, то есть примерно равную 985 п.е.
Такая жаропрочность может быть достигнута также при слое блоков 14 толщиной, примерно равной 148 мм, и теплопроводности, равной 0,15 Вт/м/К.
Высокая жаропрочность позволяет обеспечить соответствующую изоляцию ванны 1.
Как вытекает из вышеприведенных значений, такие блоки имеют теплопроводность, эквивалентную теплопроводности изоляционных кирпичей и ниже теплопроводности огнеупорных кирпичей.
Кроме того, блоки на основе углерода инертны в отношении алюминия и электролизного расплава в той мере, что через них не проходит электрический ток, как видно из вышеизложенного.
В действительности, блоки не подвержены прохождению электрического тока в связи с их расположением относительно катода 6 и их высоким электрическим сопротивлением, которое связано с незначительной теплопроводностью.
Кроме того, использование блоков, имеющих такие размеры, позволяет создать изоляцию на основе примерно 310 блоков по сравнению с изоляцией ванны, соответствующей уровню техники, которая состоит из примерно 10000 кирпичей. Легко понять, что небольшой вес и размеры блоков 14 существенно облегчают монтаж ванны 1.
Более того, облегчение оградить изоляционный слой от примесей и невысокое загрязнение фторидами позволяют снизить издержки на борьбу с загрязнением и списанием в отвал при демонтаже набивного материала отработанной ванны.
Разумеется, изобретение не ограничивается одним вариантом осуществления этой системы, описанной выше в качестве примера, наоборот, оно включает все варианты. Так, в частности, блоки на основе углерода не обязательно образованы на основе пены, они могут быть изготовлены из материала на основе углерода, имеющего аналогичные тепловые свойства.
1. Электролизная ванна (1) для получения алюминия, содержащая кожух (2), по меньшей мере один катодный блок (6), расположенный по меньшей мере частично в кожухе (2), по меньшей мере один анод (11), подвешенный над ванной и погруженный в верхнюю часть электролизной ванны, изоляцию (3), покрывающую по меньшей мере частично внутреннюю поверхность кожуха (2) и расположенную между катодным блоком (6) и кожухом (2), при этом кожух (2) и элементы, которые содержатся в нем, образуют тигель (10), предназначенный для приема электролизного расплава, контактирующего с катодным блоком (6), отличающаяся тем, что изоляция (3) выполнена, по меньшей мере частично, из блоков (14) на основе углерода, имеющих теплопроводность ниже 1 Вт/м/К.
2. Электролизная ванна (1) по п.1, отличающаяся тем, что блоки (14) на основе углерода имеют плотность в пределах 0,03 и 0,8 г/см 3 , предпочтительно в пределах 0,1 и 0,6 г/см 3 .
3. Электролизная ванна (1) по одному из пп.1 и 2, отличающаяся тем, что теплопроводность блоков (14) на основе углерода ниже 0,3 Вт/м/К.
4. Электролизная ванна (1) по одному из пп.1 и 2, отличающаяся тем, что блоки (14) на основе углерода выполнены в форме плит размерами порядка 120×440×880 мм.
5. Электролизная ванна (1) по п.4, отличающаяся тем, что соединение между плитами осуществляется при помощи углеродных клеев или углеродных цементов.
6. Электролизная ванна (1) по одному из пп.1 и 2, отличающаяся тем, что блоки (14) выполнены на основе углеродной пены.
Источник