Преобразование числовых выражений рациональным способом

Грамотное преобразование рациональных выражений

Рациональные выражения и дроби — краеугольный пункт всего курса алгебры. Те, кто научатся работать с такими выражениями, упрощать их и раскладывать на множители, по сути смогут решить любую задачу, поскольку преобразование выражений — неотъемлемая часть любого серьёзного уравнения, неравенства и даже текстовой задачи.

В этом видеоуроке мы посмотрим, как грамотно применять формулы сокращённого умножения для упрощения рациональных выражений и дробей. Научимся видеть эти формулы там, где, на первый взгляд, ничего нет. Заодно повторим такой нехитрый приём, как разложение квадратного трёхчлена на множители через дискриминант.

Как вы уже наверняка догадались по формулам за моей спиной, сегодня мы будем изучать формулы сокращенного умножения, а, точнее, не сами формулы, а их применение для упрощения и сокращения сложных рациональных выражений. Но, прежде чем переходить к решению примеров, давайте познакомимся ближе с этими формулами или вспомним их:

Еще хотел бы отметить, что наша школьная система образования устроена таким образом, что именно с изучением этой темы, т.е. рациональных выражений, а также корней, модулей у всех учеников возникает одна и та же проблема, которую я сейчас объясню.

Дело в том, что в самом начале изучения формул сокращенного умножения и, соответственно, действий по сокращению дробей (это где-то 8 класс) учителя говорят что-то следующее: «Если вам что-то непонятно, то вы не переживайте, мы к этой теме еще вернемся неоднократно, в старших классах так точно. Мы это еще разберем». Ну а затем на рубеже 9-10 класса те же самые учителя объясняют тем же самым ученикам, которые так и не знают, как решать рациональные дроби, примерно следующее: «А где вы были предыдущие два года? Это же изучалось на алгебре в 8 классе! Чего тут может быть непонятного? Это же так очевидно!».

Однако обычным ученикам от таких объяснений нисколько не легче: у них как была каша в голове, так и осталась, поэтому прямо сейчас мы разберем два простых примера, на основании которых и посмотрим, каким образом в настоящих задачах выделять эти выражения, которые приведут нас к формулам сокращенного умножения и как потом применять это для преобразования сложных рациональных выражений.

Сокращение простых рациональных дробей

Задача № 1

Первое, чему нам нужно научиться — выделять в исходных выражениях точные квадраты и более высокие степени, на основании которых мы сможем потом применять формулы. Давайте посмотрим:

Перепишем наше выражение с учетом этих фактов:

Задача № 2

Переходим ко второй задаче:

Упрощать тут нечего, потому что в числителе стоит константа, но я предложил эту задачу именно для того, чтобы вы научились раскладывать на множители многочлены, содержащие две переменных. Если бы вместо него был написанный ниже многочлен, как бы мы разложили его?

Давайте решим уравнение и найдем $x$, которые мы сможем поставить вместо точек:

\[D=25-4\cdot \left( -6 \right)=25+24=49\]

Мы можем переписать трехчлен следующим образом:

С квадратным трехчленом мы работать научились — для этого и нужно было записать этот видеоурок. А что делать, если кроме $x$ и константы присутствует еще $y$? Давайте рассмотрим их как еще одни элементы коэффициентов, т.е. перепишем наше выражение следующим образом:

Запишем разложение нашей квадратной конструкции:

\[\left( x-y \right)\left( x+6y \right)\]

Читайте также:  Засев трав механизированным способом расценка

Итого если мы вернемся к исходному выражению и перепишем его с учетом изменений, то получим следующее:

Что нам дает такая запись? Ничего, потому что его не сократить, оно ни на что не умножается и не делится. Однако как только эта дробь окажется составной частью более сложного выражения, подобное разложение окажется кстати. Поэтому как только вы видите квадратный трехчлен (неважно, отягощен он дополнительными параметрами или нет), всегда старайтесь разложить его на множители.

Нюансы решения

Запомните основные правила преобразования рациональных выражений:

  • Все знаменатели и числители необходимо раскладывать на множители либо через формулы сокращенного умножения, либо через дискриминант.
  • Работать нужно по такому алгоритму: когда мы смотрим и пытаемся выделить формулу сокращенного умножения, то, прежде всего, пытаемся все перевести в максимально возможную степень. После этого выносим за скобку общую степень.
  • Очень часто будут встречаться выражения с параметром: в качестве коэффициентов будут возникать другие переменные. Их мы находим по формуле квадратного разложения.

Таким образом, как только вы видите рациональные дроби, первое, что нужно сделать — это разложить и числитель, и знаменатель на множители (на линейные выражения), при этом мы используем формулы сокращенного умножения или дискриминант.

Давайте посмотрим на пару таких рациональных выражений и попробуем их разложить на множители.

Решение более сложных примеров

Задача № 1

Переписываем и стараемся разложить каждое слагаемое:

\[6xy=2\cdot 3\cdot x\cdot y=2x\cdot 3y\]

Давайте перепишем все наше рациональное выражение с учетом этих фактов:

Источник

Преобразование рациональных выражений

Дроби

Правильные обыкновенные дроби — числитель меньше знаменателя

Неправильные обыкновенные дроби – числитель больше знаменателя.

Смешанные обыкновенные дроби – дроби, у которых имеется целая и дробная часть. Между целой и дробной частью стоит знак $+$, но его не пишут.

  • Чтобы перейти из смешанной дроби в неправильную дробь надо знаменатель умножить на целое значение, к этому результату прибавить числитель и записать полученное число в числитель новой дроби, а знаменатель оставить прежним.
  • Чтобы в неправильной дроби выделить целую часть надо в столбик делить числитель на знаменатель до последнего остатка, далее:
  1. Результат деления – это целая часть новой дроби.
  2. Остаток — это числитель новой дроби.
  3. Знаменатель остается прежним.

Пример: Выделить целую часть $<22>/<3>$

При делении $22$ на $3$ получаем $7$ в результате и $(1)$ в остатке, следовательно, $<22>/<3>=7<1>/<3>$

  • Чтобы сложить дроби с разными знаменателями нужно воспользоваться следующими правилами.
  1. Привести данные дроби к наименьшему общему знаменателю (НОЗ). Для этого найти наименьшее общее кратное знаменателей.
  2. Найти дополнительные множители для каждой дроби. Для этого наименьший общий знаменатель делим по очереди на знаменатель каждой дроби. Полученные числа и будут дополнительными множителями для каждой из дробей. Множители записываем над числителем дроби справа сверху.
  3. Числитель и знаменатель каждой дроби умножаем на свой дополнительный множитель. Если в результате получилась неправильная дробь, то выделяем целую часть. Если в результате получилась сократимая дробь, необходимо выполнить сокращение.
  • При умножении и делении дробей их надо подписать под общей чертой и сократить.
  • При делении дробей, вторую дробь переворачиваем.
  • При умножении или делении смешанных дробей, дроби надо перевести в неправильные.

Десятичная дробь — это любая числовая дробь, в знаменателе которой стоит степень десятки.

Десятичная запись — это форма записи десятичных дробей, где целая часть отделяется от дробной с помощью обычной точки или запятой. При этом сам разделитель (точка или запятая) называется десятичной точкой.

  • Сложение и вычитание десятичных дробей выполняют поразрядно. Удобно это выполнять в столбик. При этом десятичные дроби подписывают друг под другом так, чтобы запятая была под запятой. Добавляют или отнимают десятичные дроби, как натуральные числа, несмотря на запятую. В результате запятую ставят под запятыми.
  • При умножении десятичных дробей надо:
  1. Выполнить умножение чисел, не обращая внимания на запятые.
  2. В результате с конца отделить количество знаков, равное сумме количества знаков у обоих множителей.
Читайте также:  Способы формирования новых потребностей

Выполнить умножение $0.28·12.5$

  1. Умножим $28·125=3500$
  2. Отделим у $3500$ с конца три знака, так как у множителей было $2$ цифры после запятой и одна (вместе три), получаем $3.500$ или $3.5$.
  • Деление десятичных дробей
  1. Перевести все десятичные дроби в обычные. (Как дробь читается, так и записывается в обыкновенном виде , например $3.14$ (Три целых четырнадцать сотых ) можем записать как $3 <14>/<100>$ или $<314>/<100>$)
  2. Разделить полученные дроби классическим способом. Другими словами, умножить первую дробь на «перевернутую» вторую
  3. Если возможно, результат снова представить в виде десятичной дроби.

Рациональные выражения — это целые и дробные выражения, состоящие из чисел и букв, соединенные между собой знаками алгебраических действий: деления, умножения, сложения или вычитания, возведения в целую степень и знаками последовательности этих выражений.

Рациональное выражение называется дробным, если оно содержит деление на буквенное выражение, например: $<2а>/<7с>$

Алгебраическое выражение, которое состоит только из действия умножения и возведения в степень, называется одночленом.

$5а^5 ср^2$ — это одночлен, в котором $5$ — это коэффициент, а $а^5 ср^2$ — буквенная часть.

  • Чтобы возвести в степень одночлен, надо возвести в эту степень каждый сомножитель и полученные результаты перемножить.

Несколько одночленов, соединенных знаками сложения и вычитания, образуют многочлен.

Например: $4x^3-3xy+8y^5$ — это многочлен. Многочлен может обозначаться записью $Р(х)$ — это означает, что многочлен зависит от «х», если записать $Р(х+1)$ — это означает, что в многочлене вместо «х» надо сделать замену на скобку (х+1)

Найдите значение выражения: $4(p(2x)−2p(x+3))$, если $p(x)=x−6$

В данном условии задан многочлен, зависящий от «х», как $p(x)=x−6$.

Чтобы было понятнее, назовем исходный многочлен основной формулой, тогда, чтобы записать $p(2x)$, в основной формуле заменим «х» на «2х».

Аналогично $p(x+3)= (х+3)-6 = х+3-6 = х-3$

Соберем все выражение: $4(p(2x)−2p(x+3))=4((2х-6)-2(х-3))$

Далее осталось раскрыть скобки и привести подобные слагаемые

Источник

Преобразование рациональных выражений: виды преобразований, примеры

Статья рассказывает о преобразовании рациональных выражений. Рассмотрим виды рациональных выражений, их преобразования, группировки, вынесения за скобки общего множителя. Научимся представлять дробные рациональные выражения в виде рациональных дробей.

Определение и примеры рациональных выражений

Выражения, которые составлены из чисел, переменных, скобок, степеней с действиями сложения, вычитания, умножения, деления с наличием черты дроби, называют рациональными выражениями.

Для примера имеем, что 5 , 2 3 · x — 5 , — 3 · a · b 3 — 1 c 2 + 4 a 2 + b 2 1 + a : ( 1 — b ) , ( x + 1 ) · ( y — 2 ) x 5 — 5 · x · y · 2 — 1 11 · x 3 .

То есть это такие выражения, которые не имеют деления на выражения с переменными. Изучение рациональных выражений начинается с 8 класса, где их называют дробными рациональными выражениями. Особое внимание уделяют дробям в числителе, которые преобразовывают с помощью правил преобразования.

Это позволяет переходить к преобразованию рациональных дробей произвольного вида. Такое выражение может быть рассмотрено как выражение с наличием рациональных дробей и целых выражений со знаками действий.

Основные виды преобразований рациональных выражений

Рациональные выражения используются для того, чтобы выполнять тождественные преобразования, группировки, приведение подобных, выполнение других действий с числами. Цель таких выражений – это упрощение.

Преобразовать рациональное выражение 3 · x x · y — 1 — 2 · x x · y — 1 .

Видно, что такое рациональное выражение – это разность 3 · x x · y — 1 и 2 · x x · y — 1 . Замечаем, что знаменатель у них идентичный. Это значит, что приведение подобных слагаемых примет вид

3 · x x · y — 1 — 2 · x x · y — 1 = x x · y — 1 · 3 — 2 = x x · y — 1

Ответ: 3 · x x · y — 1 — 2 · x x · y — 1 = x x · y — 1 .

Выполнить преобразование 2 · x · y 4 · ( — 4 ) · x 2 : ( 3 · x — x ) .

Первоначально выполняем действия в скобках 3 · x − x = 2 · x . Данное выражение представляем в виде 2 · x · y 4 · ( — 4 ) · x 2 : ( 3 · x — x ) = 2 · x · y 4 · ( — 4 ) · x 2 : 2 · x . Мы приходим к выражению, которое содержит действия с одной ступенью, то есть имеет сложение и вычитание.

Избавляемя от скобок при помощи применения свойства деления. Тогда получаем, что 2 · x · y 4 · ( — 4 ) · x 2 : 2 · x = 2 · x · y 4 · ( — 4 ) · x 2 : 2 : x .

Группируем числовые множители с переменной x , после этого можно выполнять действия со степенями. Получаем, что

2 · x · y 4 · ( — 4 ) · x 2 : 2 : x = ( 2 · ( — 4 ) : 2 ) · ( x · x 2 : x ) · y 4 = — 4 · x 2 · y 4

Ответ: 2 · x · y 4 · ( — 4 ) · x 2 : ( 3 · x — x ) = — 4 · x 2 · y 4 .

Преобразовать выражение вида x · ( x + 3 ) — ( 3 · x + 1 ) 1 2 · x · 4 + 2 .

Для начала преобразовываем числитель и знаменатель. Тогда получаем выражение вида ( x · ( x + 3 ) — ( 3 · x + 1 ) ) : 1 2 · x · 4 + 2 , причем действия в скобках делают в первую очередь. В числителе выполняются действия и группируются множители. После чего получаем выражение вида x · ( x + 3 ) — ( 3 · x + 1 ) 1 2 · x · 4 + 2 = x 2 + 3 · x — 3 · x — 1 1 2 · 4 · x + 2 = x 2 — 1 2 · x + 2 .

Преобразуем в числителе формулу разности квадратов, тогда получаем, что

x 2 — 1 2 · x + 2 = ( x — 1 ) · ( x + 1 ) 2 · ( x + 1 ) = x — 1 2

Ответ: x · ( x + 3 ) — ( 3 · x + 1 ) 1 2 · x · 4 + 2 = x — 1 2 .

Представление в виде рациональной дроби

Алгебраическая дробь чаще всего подвергается упрощению при решении. Каждое рациональное приводится к этому разными способами. Необходимо выполнить все необходимые действия с многочленами для того, чтобы рациональное выражение в итоге смогло дать рациональную дробь.

Представить в виде рациональной дроби a + 5 a · ( a — 3 ) — a 2 — 25 a + 3 · 1 a 2 + 5 · a .

Данное выражение можно представить в виде a 2 — 25 a + 3 · 1 a 2 + 5 · a . Умножение выполняется в первую очередь по правилам.

Следует начать с умножения, тогда получим, что

a 2 — 25 a + 3 · 1 a 2 + 5 · a = a — 5 · ( a + 5 ) a + 3 · 1 a · ( a + 5 ) = a — 5 · ( a + 5 ) · 1 ( a + 3 ) · a · ( a + 5 ) = a — 5 ( a + 3 ) · a

Производим представление полученного результата с исходное. Получим, что

a + 5 a · ( a — 3 ) — a 2 — 25 a + 3 · 1 a 2 + 5 · a = a + 5 a · a — 3 — a — 5 a + 3 · a

Теперь выполняем вычитание:

a + 5 a · a — 3 — a — 5 a + 3 · a = a + 5 · a + 3 a · ( a — 3 ) · ( a + 3 ) — ( a — 5 ) · ( a — 3 ) ( a + 3 ) · a · ( a — 3 ) = = a + 5 · a + 3 — ( a — 5 ) · ( a — 3 ) a · ( a — 3 ) · ( a + 3 ) = a 2 + 3 · a + 5 · a + 15 — ( a 2 — 3 · a — 5 · a + 15 ) a · ( a — 3 ) · ( a + 3 ) = = 16 · a a · ( a — 3 ) · ( a + 3 ) = 16 a — 3 · ( a + 3 ) = 16 a 2 — 9

После чего очевидно, что исходное выражение примет вид 16 a 2 — 9 .

Ответ: a + 5 a · ( a — 3 ) — a 2 — 25 a + 3 · 1 a 2 + 5 · a = 16 a 2 — 9 .

Представить x x + 1 + 1 2 · x — 1 1 + x в виде рациональной дроби.

Заданное выражение записывается как дробь, в числителе которой имеется x x + 1 + 1 , а в знаменателе 2 · x — 1 1 + x . Необходимо произвести преобразования x x + 1 + 1 . Для этого нужно выполнить сложение дроби и числа. Получаем, что x x + 1 + 1 = x x + 1 + 1 1 = x x + 1 + 1 · ( x + 1 ) 1 · ( x + 1 ) = x x + 1 + x + 1 x + 1 = x + x + 1 x + 1 = 2 · x + 1 x + 1

Следует, что x x + 1 + 1 2 · x — 1 1 + x = 2 · x + 1 x + 1 2 · x — 1 1 + x

Получившаяся дробь может быть записана как 2 · x + 1 x + 1 : 2 · x — 1 1 + x .

После деления придем к рациональной дроби вида

2 · x + 1 x + 1 : 2 · x — 1 1 + x = 2 · x + 1 x + 1 · 1 + x 2 · x — 1 = 2 · x + 1 · ( 1 + x ) ( x + 1 ) · ( 2 · x — 1 ) = 2 · x + 1 2 · x — 1

Можно решить это иначе.

Вместо деления на 2 · x — 1 1 + x производим умножение на обратную ей 1 + x 2 · x — 1 . Применим распределительное свойство и получаем, что

x x + 1 + 1 2 · x — 1 1 + x = x x + 1 + 1 : 2 · x — 1 1 + x = x x + 1 + 1 · 1 + x 2 · x — 1 = = x x + 1 · 1 + x 2 · x — 1 + 1 · 1 + x 2 · x — 1 = x · 1 + x ( x + 1 ) · 2 · x — 1 + 1 + x 2 · x — 1 = = x 2 · x — 1 + 1 + x 2 · x — 1 = x + 1 + x 2 · x — 1 = 2 · x + 1 2 · x — 1

Ответ: x x + 1 + 1 2 · x — 1 1 + x = 2 · x + 1 2 · x — 1 .

Источник

Читайте также:  Периферийные устройства пк их характеристика способы подключения
Оцените статью
Разные способы