Представление чисел различными способами

Представление чисел в ЭВМ

Целые числа

Для числа +1101 :

Прямой код Обратный код Дополнительный код
0,0001101 0,0001101 0,0001101

Для числа -1101 :

Прямой код Обратный код Дополнительный код
1,0001101 1,1110010 1,1110011

Вещественные числа (числа с плавающей точкой)

Пример .
Запишите код действительного числа, интерпретируя его как величину типа Double.
а) 446,15625;
Переводим десятичное число в двоичное представление.

Целая часть от деления Остаток от деления
446 div 2 = 223 446 mod 2 = 0
223 div 2 = 111 223 mod 2 = 1
111 div 2 = 55 111 mod 2 = 1
55 div 2 = 27 55 mod 2 = 1
27 div 2 = 13 27 mod 2 = 1
13 div 2 = 6 13 mod 2 = 1
6 div 2 = 3 6 mod 2 = 0
3 div 2 = 1 3 mod 2 = 1
1 div 2 = 0 1 mod 2 = 1

Остаток от деления записываем в обратном порядке. Получаем число в 2-ой системе счисления: 110111110
446 = 1101111102
Для перевода дробной части числа последовательно умножаем дробную часть на основание 2. В результате каждый раз записываем целую часть произведения.
0.15625*2 = 0.313 (целая часть 0)
0.313*2 = 0.626 (целая часть 0)
0.626*2 = 1.252 (целая часть 1)
0.252*2 = 0.504 (целая часть 0)
0.504*2 = 1.008 (целая часть 1)
Получаем число в 2-ой системе счисления: 00101

0.15625 = 001012
446.15625 = 110111110,001012 = 1,1011111000101*2 8

Знак S = 0
Порядок P = 8 + 1023 = 103110 = 100000001112
Мантисса: 1011111000101
Для числа с двойной точностью мантисса занимает 52 разряда. Добавляем нули.
Мантисса: 1011 1110 0010 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000
Запишем число:
0 10000000111 1011 1110 0010 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000
В шестнадцатеричной системе счисления: 407BE2800000000016

б) -455,375.
Переводим десятичное число в двоичное представление.

Целая часть от деления Остаток от деления
455 div 2 = 227 455 mod 2 = 1
227 div 2 = 113 227 mod 2 = 1
113 div 2 = 56 113 mod 2 = 1
56 div 2 = 28 56 mod 2 = 0
28 div 2 = 14 28 mod 2 = 0
14 div 2 = 7 14 mod 2 = 0
7 div 2 = 3 7 mod 2 = 1
3 div 2 = 1 3 mod 2 = 1
1 div 2 = 0 1 mod 2 = 1

Остаток от деления записываем в обратном порядке. Получаем число в 2-ой системе счисления: 111000111
455 = 1110001112
Для перевода дробной части числа последовательно умножаем дробную часть на основание 2. В результате каждый раз записываем целую часть произведения.
0.375*2 = 0.75 (целая часть 0)
0.75*2 = 1.5 (целая часть 1)
0.5*2 = 1 (целая часть 1)
0*2 = 0 (целая часть 0)
Получаем число в 2-ой системе счисления: 0110
0.375 = 01102

Читайте также:  Способы выражения авторской позиции кратко

455,375 = 111000111,01102 = 1,110001110110*2 8 2

Знак S = 1
Порядок P = 8 + 1023 = 103110 = 100000001112
Мантисса: 1100 0111 0110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
Запишем число:
1 10000000111 1100 0111 0110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
В шестнадцатеричной системе счисления: -455,375 = C07C76000000000016

Дан код величины типа Double. Преобразуйте его число.
а) 408B894000000000;
Представим в двоичном коде:
010000001000 1011 1000 1001 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000
где
S = 0 (положительное число)
P = 100000010002 = 1032 – 1023 = 9
M = 10111000100101
N = 1,10111000100101
С учетом P = 9, N = 1101110001,00101

1101110001 = 2 9 *1 + 2 8 *1 + 2 7 *0 + 2 6 *1 + 2 5 *1 + 2 4 *1 + 2 3 *0 + 2 2 *0+ 2 1 *0 + 2 0 *1 = 512 + 256 + 0 + 64 + 32 + 16 + 0 + 0 + 0 + 1 = 881

Для перевода дробной части необходимо разделить разряд числа на соответствующую ему степень разряда
00101 = 2 -1 *0 + 2 -2 *0 + 2 -3 *1 + 2 -4 *0 + 2 -5 *1 = 0.15625

б) C089930000000000.
Представим в двоичном коде:
1 10000001000 100110010011000000000000000000000000 0000 0000 0000 0000
где
S = 1 (отрицательное число)
P = 100000010002 = 1032 – 1023 = 9
M = 100110010011
N =1,100110010011
С учетом P = 9, N = 1100110010,011

1100110010 = 2 9 *1 + 2 8 *1 + 2 7 *0 + 2 6 *0 + 2 5 *1 + 2 4 *1 + 2 3 *0 + 2 2 *0 + 2 1 *1 + 2 0 *0 = 512 + 256 + 0 + 0 + 32 + 16 + 0 + 0 + 2 + 0 = 818

Для перевода дробной части необходимо разделить разряд числа на соответствующую ему степень разряда
011 = 2 -1 *0 + 2 -2 *1 + 2 -3 *1 = 0.375

Источник

Уроки 6 — 7
§ 1.2. Представление чисел в компьютере

Ключевые слова:

• разряд
• беззнаковое представление целых чисел
• представление целых чисел со знаком
• представление вещественных чисел

1.2.1. Представление целых чисел

Оперативная память компьютера состоит из ячеек, каждая из которых представляет собой физическую систему, состоящую из некоторого числа однородных элементов. Эти элементы обладают двумя устойчивыми состояниями, одно из которых соответствует нулю, а другое — единице. Каждый такой элемент служит для хранения одного из битов — разряда двоичного числа. Именно поэтому каждый элемент ячейки называют битом или разрядом (рис. 1.2).

Рис. 1.2. Ячейка памяти

Для компьютерного представления целых чисел используется несколько различных способов, отличающихся друг от друга количеством разрядов (под целые числа обычно отводится 8, 16, 32 или 64 разряда) и наличием или отсутствием знакового разряда. Беззнаковое представление можно использовать только для неотрицательных целых чисел, отрицательные числа представляются только в знаковом виде.

Беззнаковое представление используется для таких объектов, как адреса ячеек, всевозможные счётчики (например, число символов в тексте), а также числа, обозначающие дату и время, размеры графических изображений в пикселях и т. д.

Максимальное значение целого неотрицательного числа достигается в случае, когда во всех разрядах ячейки хранятся единицы. Для n-разрядного представления оно будет равно 2 n -1. Минимальное число соответствует п нулям, хранящимся в n разрядах памяти, и равно нулю.

Читайте также:  Основные способы цитирования это

Ниже приведены максимальные значения для беззнаковых целых n-разрядных чисел:

Для получения компьютерного представления беззнакового целого числа достаточно перевести число в двоичную систему счисления и дополнить полученный результат слева нулями до стандартной разрядности.

Пример 1. Число 5310 = 1101012 в восьмиразрядном представлении имеет вид:

Это же число 53 в шестнадцати разрядах будет записано следующим образом:

При представлении со знаком самый старший (левый) разряд отводится под знак числа, остальные разряды — под само число. Если число положительное, то в знаковый разряд помещается 0, если число отрицательное — 1. Такое представление чисел называется прямым кодом.

В компьютере прямые коды используются для хранения положительных чисел в запоминающих устройствах, для выполнения операций с положительными числами.

На сайте Федерального центра информационно-образовательных ресурсов (http://fcior.edu.ru/) размещён информационный модуль «Число и его компьютерный код». С помощью этого ресурса вы можете получить дополнительную информацию по изучаемой теме.

Для выполнения операций с отрицательными числами используется дополнительный код, позволяющий заменить операцию вычитания сложением. Узнать алгоритм образования дополнительного кода вы можете с помощью информационного модуля «Дополнительный код», размещённого на сайте Федерального центра информационно-образовательных ресурсов (http://fcior.edu.ru/).

1.2.2. Представление вещественных чисел

Любое вещественное число А может быть записано в экспоненциальной форме:

где:

m — мантисса числа;
q — основание системы счисления;
p — порядок числа.

Например, число 472 000 000 может быть представлено так: 4,72 • 10 8 , 47,2 • 10 7 , 472,0 • 10 6 и т. д.

С экспоненциальной формой записи чисел вы могли встречаться при выполнении вычислений с помощью калькулятора, когда в качестве ответа получали записи следующего вида: 4.72Е+8.

Здесь знак «Е» обозначает основание десятичной системы счисления и читается как «умножить на десять в степени».

Из приведённого выше примера видно, что положение запятой в записи числа может изменяться.

Для единообразия мантиссу обычно записывают как правильную дробь, имеющую после запятой цифру, отличную от нуля. В этом случае число 472 000 000 будет представлено как 0,472 • 10 9 .

Вещественное число может занимать в памяти компьютера 32 или 64 разряда. При этом выделяются разряды для хранения знака мантиссы, знака порядка, порядка и мантиссы.

Пример:

Диапазон представления вещественных чисел определяется количеством разрядов, отведённых для хранения порядка числа, а точность определяется количеством разрядов, отведённых для хранения мантиссы.

Читайте также:  Способы саморегуляции стрессовых состояний

Максимальное значение порядка числа для приведённого выше примера составляет 11111112 = 12710, и, следовательно, максимальное значение числа:

0,11111111111111111111111 • 10 1111111

Попытайтесь самостоятельно выяснить, каков десятичный эквивалент этой величины.

Широкий диапазон представления вещественных чисел важен для решения научных и инженерных задач. Вместе с тем следует понимать, что алгоритмы обработки таких чисел более трудоёмки по сравнению с алгоритмами обработки целых чисел.

САМОЕ ГЛАВНОЕ

Для компьютерного представления целых чисел используются несколько различных способов, отличающихся друг от друга количеством разрядов (8, 16, 32 или 64) и наличием или отсутствием знакового разряда.

Для представления беззнакового целого числа его следует перевести в двоичную систему счисления и дополнить полученный результат слева нулями до стандартной разрядности.

При представлении со знаком самый старший разряд отводится под знак числа, остальные разряды — под само число. Бели число положительное, то в знаковый разряд помещается 0, если число отрицательное, то 1. Положительные числа хранятся в компьютере в прямом коде, отрицательные — в дополнительном.

При хранении в компьютере вещественных чисел выделяются разряды на хранение знака порядка числа, самого порядка, знака мантиссы и мантиссы. При этом любое число записывается так:

где:

m — мантисса числа;
q — основание системы счисления;
p — порядок числа.

Вопросы и задания

1. Ознакомьтесь с материалами презентации к параграфу, содержащейся в электронном приложении к учебнику. Используйте эти материалы при подготовке ответов на вопросы и выполнении заданий.

2. Как в памяти компьютера представляются целые положительные и отрицательные числа?

3. Любое целое число можно рассматривать как вещественное, но с нулевой дробной частью. Обоснуйте целесообразность наличия особых способов компьютерного представления целых чисел.

4. Представьте число 6310 в беззнаковом 8-разрядном формате.

5. Найдите десятичные эквиваленты чисел по их прямым кодам, записанным в 8-разрядном формате со знаком:

а) 01001100;
б) 00010101.

6. Какие из чисел 4438, 1010102, 25610 можно сохранить в 8-разрядном формате?

7. Запишите следующие числа в естественной форме:

а) 0,3800456 • 10 2 ;
б) 0,245 • 10 -3 ;
в) 1,256900Е+5;
г) 9,569120Е-3.

8. Запишите число 2010,010210 пятью различными способами в экспоненциальной форме.

9. Запишите следующие числа в экспоненциальной форме с нормализованной мантиссой — правильной дробью, имеющей после запятой цифру, отличную от нуля:

10. Изобразите схему, связывающую основные понятия, рассмотренные в данном параграфе.

Электронное приложение к уроку

Файлы Материалы урока Ресурсы ЭОР

Cкачать материалы урока

Источник

Оцените статью
Разные способы