Предложите способ определения водорода
1 m(NaCl)=200×(15/100)=30 г
2 m(H2O)=200-30=170 г
Ответ: Понадобится 30 г поваренной соли и 170 г воды.
V= 3,92:22,4 = 0,176 моль.
m=0,175*170=29,75г
60%=0.6
масса йодпропана= 29,75*0,6=17,85г.
ответ: V= 0,176, m=29,75г, mйодопромана = 17,85г.
C3H8=CH4+C2H4 (термический крекинг)
C2H4+HCl=C2H5Cl
2C2H5Cl+2Na=2NaCl+C4H10
C5H12=C5H10+H2 -t°, кат. Cr2O3
Ответ:Сочетание слов Словосочетание — это соединение двух самостоятельных слов, связанных подчинительной связью. Подчинительной называется связь, которая связывает неравноправные компоненты, один из которых является главным, а другой — зависимым; от главного слова к зависимому можно поставить вопрос
Объяснение:
Выберите один или несколько ответов:
d. Большинство реакций между веществами протекает медленно
Источник
Как проверить содержание водорода
С учетом возрастающей популярности водородной воды на рынке появляются различные приборы и изделия для получения молекулярного водорода. Однако, не все продукты могут производить достаточное количество Н2 и соответственно не будут иметь полезного влияния на организм человека. Концентрация Н2 имеющая терапевтический эффект составляет более 0,6 мг/л, при меньшей концентрации эффекты водорода будут малозаметны.
Основная проблема водородных продуктов – это сложность достоверного определения концентраций растворенного Н2 в воде. На рынке нет доступных анализаторов газообразного Н2, которые сможет купить себе пользователь генераторов водородной воды.
Соответственно мы будем часто встречаться с недобросовестными продавцами и не качественными водородными изделиями пока не придумают дешевых способов измерения Н2.
В этой статье мы расскажем о различных методах определения Н2 в воде, от самых точных и достоверных методов до способов с погрешностями показаний.
Газовая хроматография
Материал из Википедии
Газовая хроматография (ГХ) – это физико-химический метод разделения веществ, основанный на распределении компонентов анализируемой смеси между двумя несмешивающимися и движущимися относительно друг друга фазами, где в качестве подвижной фазы выступает газ (газ-носитель), а в качестве неподвижной фазы — твердый сорбент или жидкость, нанесенная на инертный твердый носитель или внутренние стенки колонки.
ГХ является основным методом разделения и анализа газообразных смесей для специалистов в химической отрасли. ГХ считается главным и самым точным способом измерения молекулярного водорода в жидкости. Этот методика определяет концентрацию водорода путем перемещения Н2 из водной фазы в газовую с использованием плотно закрытого сосуда.
Данное оборудование используется только в лабораторных или промышленных условиях, требует особых навыков и имеет высокую стоимость.
Микросенсорные датчики водорода
Высокочувствительный микродатчик водорода имеет исключительную чувствительность, которая позволяет измерять даже в естественных системах.
Микро- и минисенсоры водорода представляют собой датчики типа Кларка, измеряющие парциальное давление водорода. Принцип работы микродатчика водорода основан на диффузии водорода через силиконовую мембрану к платиновому аноду, окисляющему водород. Восстанавливающий анод поляризован относительно внутреннего катода Ag / AgCl. Результирующий сигнал датчика находится в диапазоне пА и измеряется высококачественным пикоамперметром.
Поскольку концентрации водорода в природных системах, как правило, очень низкие, очень важен низкий предел обнаружения датчика. Обычно предел обнаружения датчиков близок к 0,02% водорода (0,1 мкМ в воде), но датчики, можно сделать еще более чувствительными, если они оснащены большим наконечником мембраны.
Конструкция микродатчика позволяет использовать водородный микродатчик в самых разных областях исследований, где требуются высококачественные, неразрушающие, быстрые и точные измерения. Микросенсор водорода предназначен для исследовательских целей в следующих областях:
- Науки об окружающей среде
- Биомедицинские науки
- Биотехнологии
- Исследования фотохимического расщепления воды
- Влияние питьевой воды, обогащенной H 2
Метод полярографической ячейки.
Полярография – это метод количественного и качественного химического анализа, основанный на получении кривых зависимости величины тока от напряжения в цепи, состоящей из исследуемого раствора и погруженных в него электродов, один из которых сильно поляризующийся, а другой практически неполяризующийся.
Российский производитель в сфере приборов контроля параметров водных сред ООО «ВЗОР» создала высокоточный анализатор водорода МАРК-501 и 509. Анализатор измеряет содержание растворенного водорода в воде при помощи амперометрического датчика, который работает по принципу полярографической ячейки закрытого типа.
Анализируемая среда отделена от специального раствора электролита при помощи мембраны, которая пропускает через себя только водород и непроницаема для воды и паров жидкости. В электролит погружены электроды анод и катод на которые подается постоянный ток. Водород, проникая через мембрану, вступает в электрохимическую реакцию с поверхностью анода в результате вырабатывается сигнал, который пропорционален концентрации растворенного водорода.
Далее данные поступают в микроконтроллер, где происходит обработка информации и результаты выводятся на ЖК экран.
Метод Титрования при помощи метиленового синего
Информация из википедия
Титрование – это постепенное прибавление титрованного раствора реагента (титранта) к анализируемому раствору для определения точки эквивалентности. Титриметрический метод анализа основан на измерении объема реагента точно известной концентрации, затраченного на реакцию взаимодействия с определяемым веществом.
Японские ученые нашли удобный и недорогой метод определения концентрации водорода при помощи реагента метиленовый синий с добавлением коллоидной платины. Метод основан на окислительной реакции водорода с помощью метиленового синего в присутствии катализатора коллоидной платины.
Формула: MB (blue) + 2H+ + 2e- = leucoMB (colorless)
Метод определения концентрации водорода при помощи раствора метиленового синего очень прост. Необходимо капнуть синий раствор в воду и размешать, при наличии растворенного водорода метиленовый синий будет обесцвечиваться. Если же вода не содержит водород, то вода окраситься в синий цвет.
Одна капля этого реагента реагирует с 0,1 мг/л (ppm) молекулярного водорода, таким образом, посчитав количество капель, обесцветивших метиленовый синий, можно узнать приблизительное количество молекулярного водорода в воде.
Например, если 9 капель в жидкости обесцветились, а 10-я окрасила воду в синий цвет, то концентрация Н2 в данной жидкости составляет 0,9 мг/л (ppm).
Метод определения водорода раствором «метиленовый синий» не самый точный, но он является официальным методом и признан наукой.
Окислительно-восстановительный потенциал
Окислительно-восстановительный потенциал можно измерить при помощи вольтметра или ОВП метра. Вода, которая подверглась электролизу (ионизированная вода) и другие формы водородной воды имеют отрицательный потенциал ОВП.
Однако отрицательный потенциал показывает не концентрацию водорода, а окислительно-восстановительные пары — пара концентрации молекулярного водорода (H2) и концентрация кислоты (ионы водорода H+), что соответствует стандартной окислительно-восстановительной полуреакции:
Можно сделать отрицательный ОВП, уменьшив концентрацию H+ (повысив pH) и/или увеличив концентрацию растворенного молекулярного водорода Н2. И наоборот, вы можете сделать ОВП положительным, увеличив концентрацию H+ (понизив pH) и/или уменьшив концентрацию растворенного молекулярного водорода Н2.
Например, добавив в воду аскорбиновой кислоты (витамин С) мы получим отрицательный ОВП на основе отношения восстановленной аскорбиновой (НА) кислоты к окисленной аскорбиновой кислоте (DHA) в соответствии с уравнением Нернста.
DHA + 2e- => HA = -570 мВ
Напряжение можно сделать более отрицательным, увеличив концентрацию HA и/или уменьшив концентрацию DHA. И наоборот, можно сделать положительным ОВП, увеличив концентрацию DHA и/или уменьшив концентрацию HA.
Этот факт следует принимать во внимание при рассмотрении концентрации молекулярного водорода. Поскольку pH играет большую роль в ОВП, то может быть ситуация, где один стакан ионизированной воды с ОВП -800 мВ, а другой с ОВП -400 мВ, из-за разницы pH второй стакан будет иметь больше молекулярного водорода чем в первом, где ОВП – 800мВ. Отрицательный ОВП является скорее индикатором присутствия H2, чем мерой концентрации.
Таким образом, технологии, основанные на измерении ОВП, не должны использоваться в качестве точного метода измерения концентрации молекулярного водорода.
Источник
Способ определения водорода в газовой и жидкой среде
Использование: контроль сред на содержание водорода. Сущность изобретения: способ определения водорода в газовой и жидкой среде включает введение в контролируемую среду металлического проводника, изменяющего электрофизические свойства при поглощении водорода. В среду дополнительно вводят металлический проводник, инертный по отношению к водороду, образующий с первым термопару, и определяют ЭДС и температуру среды. О количестве водорода судят по отклонению величины ЭДС от тарировочной кривой, построенной при отсутствии водорода. 2 ил.
Изобретение относится к области аналитической химии, а именно к способам определения водорода в газовой и жидкой среде, и может быть использовано, в частности, в химической промышленности при исследовании растворимости водорода и его восстановительной способности, а также в атомной энергетике при определении водорода в защитных газах и теплоносителях ЯЗУ. Цель изобретения повышение точности и оперативности определения водорода в среде (газах и жидкостях). Для этого по способу, включающему введение в контролируемую среду металлического проводника, изменяющего электрофизические свойства при поглощении водорода, дополнительно вводят металлический проводник, инертный по отношению к водороду и образующий с первым термопару, например палладий-золото (сплавы палладия-золота; 40,33% Pd и 59,63% Au), и определяют ЭДС пары, а о количестве водорода судят по отклонению величины ЭДС пары от тарировочной кривой, построенной при отсутствии водорода при температуре измерения ЭДС пары. Положительный эффект по предлагаемому способу достигается за счет упрощения конструктивной и измерительной схем реализации способа определения водорода: вместо измерения изменения электросопротивления металлического проводника в среде водорода регистрируется изменение величины ЭДС пары металлических проводников, один из которых изменяет свои электрофизические свойства в водороде, а другой не изменяет. Это приводит к тому, что исключает мост Уитстона, отпадает необходимость в поддержании расхода среды. Предлагаемый способ при его реализации позволяет контролировать водород непосредственно в контуре, что повышает точность и оперативный контроль. Рассматриваемый способ основан на известном физическом явлении изменения работы выхода электронов материала при поглощении водорода. При контакте двух разнородных металлов с работами выхода А1 и А2 происходит преимущественный переход электронов из металла с меньшей работой выхода (А1) в металл с большей работой выхода (А2). Металлы заряжаются разноименно и в состоянии термодинамического равновесия между ними имеется разность потенциалов Е, которая равна: E , где е заряд электрона. Следовательно, измеряя ЭДС пары и температуру в месте расположения горячего спая пары, можно из ранее полученной зависимости ЭДС пары от парциального давления водорода и температуры определить концентрацию водорода в среде. Величина изменения сигнала от концентрации водорода по предлагаемому способу выше, чем у прототипа. Так, при изменении содержания водорода от 0 до 1 ата при постоянной температуре, например 210 о С, по прототипу она составляет
10% а по предлагаемому способу
15% и с ростом температуры эта разность увеличивается. Следовательно, точность определения водорода предлагаемым способом выше. Таким образом, заявленное решение обладает существенными отличиями. Изобретение поясняется чертежами. На фиг.1 показана принципиальная схема реализации предлагаемого способа. Электрод 2 изменяет свои электрофизические свойства в водороде и выполняется, к примеру, из палладия или его сплавов. Электрод 3 не изменяет своих электрофизических свойств в водороде и выполняется, например, из золота или сплава золота с платиной с содержанием платины 40,33% Эти электроды между собой соединены в спай 1, который находится в контролируемой среде. Холодные спаи 4 электродов 2 и 3 находятся при одной и той же температуре, например 0 о С (в сосуде Дьюара, наполненном водой со льдом). ЭДС пары электродов 2 и 3 измеряется цифровым вольтметром 5. Для экспериментальной проверки предлагаемого способа была изготовлена пара палладий 2 платина 3. Горячий спай 1 поместили в сосуд, холодные спаи 4 электродов 2 и 3 находились на воздухе при 25 о С ЭДС пары измеряли цифровым вольтметром Ф-30. Температуру измеряли ХА термопарой в стеклянном изоляторе в месте расположения горячего спая 1 пары. Результаты экспериментальной проверки работоспособности предлагаемого способа представлены на фиг.2. Видно, что разность показаний пары в аргоне и водороде при температуре 200, 210, 220 о С соответственно равны 8,4% 15,7% 21,4% что указывает на высокую чувствительность к водороду. На фиг.2 прямая 1 соответствует содержанию водорода РН2 1 ата, прямая 2 РН2 0. Установлена зависимость ЭДС от температуры в среде анализируемого газа для пары (Pd Ag) Pt: E -2,1 + 0,027 x t для чистого аргона; Е -3,1 + 0,029 х t для смеси 25% Н2 в Ar в интервале температур 180-400 о С. В настоящее время проводятся работы по конструктивной реализации и определению температурных и концентрационных границ применимости предлагаемого способа контроля водорода в газовых и жидких средах. Диаметр электродных проводников оказывает влияние на инерционность датчиков, реализованных по предлагаемому способу определения водорода. Пленочные электродные проводники позволяют изготовить малоинерционные датчики. Исследования датчиков, приготовленных по предлагаемому способу из электродных проводников (Pd Ag) и Pt диаметром 0,1 мм, в интервале температур 170-600 о С и концентрации водорода до 50 мас. в инертном газе (аргон или гелий) показали, что имеют место воспроизводимые и однозначные результаты. При температуре ниже 170 о С наблюдались невоспроизводимые результаты, что связано с наличием фазового перехода в системе Pd-Ag-H.
СПОСОБ ОПРЕДЕЛЕНИЯ ВОДОРОДА В ГАЗОВОЙ И ЖИДКОЙ СРЕДЕ, включающий введение в контролируемую среду металлического проводника, изменяющего электрофизические свойства при поглощении водорода, отличающийся тем, что, с целью повышения точности и оперативности контроля, в среду дополнительно вводят металлический проводник, инертный по отношению к водороду и образующий с первым металлическим проводником термопару, при температуре выше температуры фазового перехода в системе «первый металлический проводник водород» измеряют ЭДС термопары, а о количестве водорода судят по отклонению величины ЭДС пары от тарировочной кривой, построенной при отсутствии водорода.
Источник