- Полином Жегалкина. Методы построения.
- Метод неопределенных коэффициентов
- Метод треугольника Паскаля
- Преобразование ДНФ
- Преобразование СДНФ
- Полином Жегалкина
- Содержание
- Полнота [ править ]
- Существование и единственность представления (теорема Жегалкина) [ править ]
- Построение полинома Жегалкина [ править ]
- По таблице истинности [ править ]
- Преобразование дизъюнктивной нормальной формы [ править ]
- Метод треугольника [ править ]
- Преобразование Мёбиуса [ править ]
Полином Жегалкина. Методы построения.
Полином (многочлен) Жегалкина представляет собой полином, коэффициентами которого являются числа $0$ или $1$, причем в качестве операций умножения и сложения выступают соответственно конъюнкция и сумма по модулю $2$. Например, для булевой функции $f\left(x_1,\ x_2,\ x_3\right)$ от трех переменных $x_1,\ x_2,\ x_3$ полином Жегалкина будет иметь следующий вид:
$$f\left(x_1,\ x_2,\ x_3\right)=a_0\bigoplus a_1x_1\bigoplus a_2x_2\bigoplus a_3x_3\bigoplus a_<12>x_1x_2\bigoplus a_<13>x_1x_3\bigoplus a_<23>x_2x_3\bigoplus a_<123>x_1x_2x_3.$$
Коэффициенты $a_0,\ a_1,\ \dots ,\ a_<123>\in \left\<0,\ 1\right\>$, то есть могут принимать значения либо $0$, либо $1$ в зависимости от того, какое значение принимает булева функция $f\left(x_1,\ x_2,\ x_3\right)$ на том или ином наборе значений переменных.
С помощью полинома Жегалкина можно представить любую булеву функцию, причем единственных образом. Поэтому можно сказать, что полином Жегалкина является еще одним способом представления булевых функций в алгебре операций $\bigoplus $ — суммы по модулю $2$, $\cdot $ — конъюнкции и константы $1$.
Операция $\bigoplus $ имеет и другие названия: сумма Жегалкина, неравнозначность, исключающее ИЛИ-НЕ. Иногда, для удобства ее обозначения используют привычную запись сложения $+$, но не стоит путать с дизъюнкцией и, тем более, с обычной арифметической операцией сложения. Таблица истинности данной операции имеет вид:
$$\begin
\hline
x & y & x\bigoplus y \\
\hline
0 & 0 & 0 \\
\hline
0 & 1 & 1 \\
\hline
1 & 0 & 1 \\
\hline
1 & 1 & 0 \\
\hline
\end
Сумма $x\bigoplus y$ принимает истинное значение тогда и только тогда, когда истинно одно и только одно составляющее высказывание. Если сравнить таблицы истинности основных логических операций, то можно заметить, что $x\bigoplus y=\overline
Для двух введенных операций $\bigoplus ,\ \cdot $ (суммы по модулю 2 и конъюнкции) выполняются все логические законы:
- Коммутативность: $x\bigoplus y=y\bigoplus x$;
- Ассоциативность: $\left(x\bigoplus y\right)\bigoplus z=x\bigoplus \left(y\bigoplus z\right)$, то есть результат $x\bigoplus y\bigoplus z$ не зависит от расстановки скобок;
- Дистрибутивность: $x\left(y\bigoplus z\right)=xy\bigoplus xz$;
- $x\bigoplus x=0$;
- $0\bigoplus x=x$;
- $\overline
=x\bigoplus 1$.
Для построения полинома Жегалкина можно использовать различные методы:
- Метод неопределенных коэффициентов;
- Метод треугольника Паскаля;
- Преобразование ДНФ;
- Преобразование СДНФ.
Метод неопределенных коэффициентов
Найдем полином Жегалкина для функции $f\left(x_1,\ x_2,\ x_3\right)=\left(x_1x_2\vee x_3\right)\to <\overline
$\begin
\hline
x_1 & x_2 & x_3 & x_1x_2 & x_1x_2\vee x_3 & f\left(x_1,\ x_2,\ x_3\right)=\left(x_1x_2\vee x_3\right)\to <\overline
0 & 0 & 0 & 0 & 0 & 1 \\
\hline
0 & 0 & 1 & 0 & 1 & 1 \\
\hline
0 & 1 & 0 & 0 & 0 & 1 \\
\hline
0 & 1 & 1 & 0 & 1 & 0 \\
\hline
1 & 0 & 0 & 0 & 0 & 1 \\
\hline
1 & 0 & 1 & 0 & 1 & 1 \\
\hline
1 & 1 & 0 & 1 & 1 & 0 \\
\hline
1 & 1 & 1 & 1 & 1 & 0 \\
\hline
\end
Общий вид полинома Жегалкина для функции $f\left(x_1,\ x_2,\ x_3\right)$ трех переменных $x_1,\ x_2,\ x_3$:
$$f\left(x_1,\ x_2,\ x_3\right)=a_0\bigoplus a_1x_1\bigoplus a_2x_2\bigoplus a_3x_3\bigoplus a_<12>x_1x_2\bigoplus a_<13>x_1x_3\bigoplus a_<23>x_2x_3\bigoplus a_<123>x_1x_2x_3.$$
Последовательно подставляем наборы значений переменных и находим коэффициенты $a_0,\ a_1,\ \dots ,\ a_<123>$.
$f\left(0,\ 0,\ 0\right)=a_0=1;$
$f\left(0,\ 0,\ 1\right)=a_0\bigoplus a_3=1\Rightarrow 1\bigoplus a_3=1\Rightarrow a_3=0;$
$f\left(0,\ 1,\ 0\right)=a_0\bigoplus a_2=1\Rightarrow 1\bigoplus a_2=1\Rightarrow a_2=0;$
$f\left(0,\ 1,\ 1\right)=a_0\bigoplus a_2\bigoplus a_3\bigoplus a_<23>=0\Rightarrow 1\bigoplus 0\bigoplus 0\bigoplus a_<23>=0\Rightarrow 1\bigoplus a_<23>=0\Rightarrow a_<23>=1;$
$f\left(1,\ 0,\ 0\right)=a_0\bigoplus a_1=1\Rightarrow 1\bigoplus a_1=1\Rightarrow a_1=0.$
$f\left(1,\ 0,\ 1\right)=a_0\bigoplus a_1\bigoplus a_3\bigoplus a_<13>=1\Rightarrow 1\bigoplus 0\bigoplus 0\bigoplus a_<13>=1\Rightarrow 1\bigoplus a_<13>=1\Rightarrow a_<13>=0;$
$f\left(1,\ 1,\ 0\right)=a_0\bigoplus a_1\bigoplus a_2\bigoplus a_<12>=0\Rightarrow 1\bigoplus 0\bigoplus 0\bigoplus a_<12>=0\Rightarrow 1\bigoplus a_<12>=0\Rightarrow a_<12>=1;$
$f\left(1,\ 1,\ 1\right)=a_0\bigoplus a_1\bigoplus a_2\bigoplus a_3\bigoplus a_<12>\bigoplus a_<13>\bigoplus a_<23>\bigoplus a_<123>=0\Rightarrow 1\bigoplus 0\bigoplus 0\bigoplus 0\bigoplus 1\bigoplus 0\bigoplus 1\bigoplus a_<123>=0\Rightarrow 1\bigoplus a_<123>=0\Rightarrow a_<123>=1;$
Подставляя найденные коэффициенты, получаем полином Жегалкина:
$$f\left(x_1,\ x_2,\ x_3\right)=1\bigoplus x_1x_2\bigoplus x_2x_3\bigoplus x_1x_2x_3.$$
Метод треугольника Паскаля
Построим полином Жегалкина для функции из предыдущего метода, используя треугольник Паскаля.
Поясним, как заполняется треугольник Паскаля. Верхняя строка треугольника задает вектор значений булевой функции $f=\left(11101100\right)$. В каждой строке, начиная со второй, любой элемент такого треугольника вычисляется как сумма по модулю $2$ двух соседних элементов предыдущей строки. Так, элементы второй строки: $1\bigoplus 1=0,\ 1\bigoplus 1=0,\ 1\bigoplus 0=1,\ 0\bigoplus 1=1,\ 1\bigoplus 1=0,\ 1\bigoplus 0=1,\ 0\bigoplus 0=0$. Аналогично вычисляются элементы других строк.
Левой стороне треугольника Паскаля соответствуют наборы значений переменных исходной функции $f\left(x_1,\ x_2,\ x_3\right)$. Соединяя знаком конъюнкции переменные, значения которых в наборе равны $1$, мы получим слагаемое в полиноме Жегалкина. Набору $\left(000\right)$ соответствует $1$, набору $\left(001\right)$ соответствует $x_3$, и т.д.
Поскольку единицам левой стороны треугольника соответствуют слагаемые $1,\ x_2x_3,\ x_1x_2,\ x_1x_2x_3$, то полином Жегалкина:
$$f\left(x_1,\ x_2,\ x_3\right)=1\bigoplus x_2x_3\bigoplus x_1x_2\bigoplus x_1x_2x_3.$$
Преобразование ДНФ
Используя основные законы алгебры логики, приведем сначала данную функцию к ДНФ.
Далее в полученной ДНФ необходимо «избавиться» от дизъюнкции, используя законы де Моргана:
Заменяем каждое отрицание $\overline
$\overline<<\overline<<\overline
Преобразование СДНФ
$\begin
\hline
x_1 & x_2 & x_3 & f\left(x_1,\ x_2,\ x_3\right) \\
\hline
0 & 0 & 0 & 1 \\
\hline
0 & 0 & 1 & 1 \\
\hline
0 & 1 & 0 & 1 \\
\hline
0 & 1 & 1 & 0 \\
\hline
1 & 0 & 0 & 1 \\
\hline
1 & 0 & 1 & 1 \\
\hline
1 & 1 & 0 & 0 \\
\hline
1 & 1 & 1 & 0 \\
\hline
\end
Для построения СДНФ по таблице истинности выбираем наборы, на которых функция $f$ принимает значение, равное 1. Если значение переменной в этом наборе равно 0, то она берется с отрицанием, если значение переменной равно 1, то переменная берется без отрицание. Соединив знаком конъюнкции переменные соответствующего набора, получим элементарную конъюнкцию. Тогда дизъюнкция всех таких элементарных конъюнкций есть СДНФ.
Чтобы построить полином Жегалкина через СДНФ, необходимо исключить операции дизъюнкции и отрицания, затем раскрыть скобки.
$f\left(x_1,\ x_2,\ x_3\right)=<\overline
Источник
Полином Жегалкина
Полином Жегалкина (англ. Zhegalkin polynomial) — полином с коэффициентами вида [math]0[/math] и [math]1[/math] , где в качестве произведения берётся конъюнкция, а в качестве сложения исключающее или. Полином был предложен в 1927 году И. И. Жегалкиным в качестве средства для представления функций булевой логики. Полином Жегалкина имеет следующий вид:
[math]P = a_ <000\ldots000>\oplus a_ <100\ldots0>x_1 \oplus a_ <010\ldots0>x_2 \oplus \ldots \oplus a_ <00\ldots01>x_n \oplus a_ <110\ldots0>x_1 x_2 \oplus \ldots \oplus a_ <00\ldots011>x_
Содержание
Полнота [ править ]
По теореме Поста, чтобы система булевых функций была полной, надо, чтобы в ней существовали
- Хотя бы одна функция, не сохраняющая [math]0[/math] ;
- Хотя бы одна функция, не сохраняющая [math]1[/math] ;
- Хотя бы одна нелинейная функция;
- Хотя бы одна немонотонная функция;
- Хотя бы одна несамодвойственная функция.
Исходя из этого, система функций [math]\bigl\langle \wedge, \oplus, 1 \bigr\rangle[/math] является полной:
[math]x_0[/math] | [math]x_1[/math] | [math]\ldots[/math] | [math]x_n[/math] | [math]1[/math] | [math]\land[/math] | [math]\oplus[/math] |
---|---|---|---|---|---|---|
[math]0[/math] | [math]0[/math] | [math]\ldots[/math] | [math]0[/math] | [math]1[/math] | [math]0[/math] | [math]0[/math] |
[math]1[/math] | [math]0[/math] | [math]\ldots[/math] | [math]0[/math] | [math]1[/math] | [math]0[/math] | [math]1[/math] |
[math]\vdots[/math] | [math]\vdots[/math] | [math]\vdots[/math] | [math]\vdots[/math] | [math]\vdots[/math] | [math]\vdots[/math] | [math]\vdots[/math] |
[math]1[/math] | [math]1[/math] | [math]\ldots[/math] | [math]1[/math] | [math]1[/math] | [math]1[/math] | [math]0[/math] |
Сохраняет 0 | [math]0[/math] | [math]1[/math] | [math]1[/math] | |||
Сохраняет 1 | [math]1[/math] | [math]1[/math] | [math]0[/math] | |||
Самодвойственная | [math]0[/math] | [math]0[/math] | [math]0[/math] | |||
Монотонная | [math]1[/math] | [math]1[/math] | [math]0[/math] | |||
Линейная | [math]1[/math] | [math]0[/math] | [math]1[/math] |
На основе этой системы и строятся полиномы Жегалкина.
Существование и единственность представления (теорема Жегалкина) [ править ]
Заметим, что различных булевых функций от [math]n[/math] переменных [math]2^<2^n>[/math] штук. При этом конъюнкций вида [math]x_
Теперь достаточно лишь доказать, что различные полиномы реализуют различные функции. Предположим противное. Тогда приравняв два различных полинома и перенеся один из них в другую часть равенства, получим полином, тождественно равный нулю и имеющий ненулевые коэффициенты. Тогда рассмотрим слагаемое с единичным коэффициентом наименьшей длины, то есть с наименьшим числом переменных, входящих в него (любой один, если таких несколько). Подставив единицы на места этих переменных, и нули на места остальных, получим, что на этом наборе только одно это слагаемое принимает единичное значение, то есть нулевая функция на одном из наборов принимает значение 1. Противоречие. Значит, каждая булева функция реализуется полиномом Жегалкина единственным образом.
Построение полинома Жегалкина [ править ]
Существует несколько способов построения полинома Жегалкина.
По таблице истинности [ править ]
Пусть для функции [math]f(x_1,x_2,\ldots,x_n)[/math] задана таблица истинности. Запишем сначала данную функцию в виде полинома Жегалкина с неопределёнными коэффициентами. Затем по очереди подставляем всевозможные наборы в порядке увеличения количества единиц и находим коэффициенты с учётом того, что [math] a \oplus 1 = \bar[/math] , а [math] a \oplus 0 = a[/math] . За каждую подстановку находим только один коэффициент.
Пример: Дана функция [math]f(x_1,x_2,x_3,x_4)[/math] и её таблица истинности:
[math]x_1[/math] | [math]x_2[/math] | [math]x_3[/math] | [math]x_4[/math] | [math]f(x_1,x_2,x_3,x_4)[/math] |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 0 |
Построим для неё полином Жегалкина:
[math]f(x_1,x_2,x_3,x_4) = a_ <0000>\oplus a_ <1000>x_1 \oplus a_ <0100>x_2 \oplus a_ <0010>x_3 \oplus a_ <0001>x_4 \oplus a_ <1100>x_1 x_2 \oplus a_ <1010>x_1 x_3 \oplus a_ <1001>x_1 x_4 \oplus a_ <0110>x_2 x_3 \oplus a_ <0101>x_2 x_4 \oplus a_ <0011>x_3 x_4 \oplus a_ <1110>x_1 x_2 x_3 \oplus a_ <1101>x_1 x_2 x_4 \oplus a_ <1011>x_1 x_3 x_4 \oplus a_ <0111>x_2 x_3 x_4 \oplus a_ <1111>x_1 x_2 x_3 x_4[/math]
Так как [math]f(0,0,0,0) = 0[/math] , то [math]a_ <0000>= 0[/math] . Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
[math]f(1,0,0,0) = a_ <0000>\oplus a_ <1000>= 1,[/math] следовательно [math]a_ <1000>= 1[/math]
[math]f(0,1,0,0) = a_ <0000>\oplus a_ <0100>= 0,[/math] следовательно [math]a_ <0100>= 0[/math]
[math]f(0,0,1,0) = a_ <0000>\oplus a_ <0010>= 0,[/math] следовательно [math] a_ <0010>= 0[/math]
[math]f(0,0,0,1) = a_ <0000>\oplus a_ <0001>= 0,[/math] следовательно [math] a_ <0001>= 0[/math]
[math]f(1,1,0,0) = a_ <0000>\oplus a_ <1000>\oplus a_ <0100>\oplus a_ <1100>= 1,[/math] следовательно [math] a_ <1100>= 0[/math]
[math]f(1,0,1,0) = a_ <0000>\oplus a_ <1000>\oplus a_ <0010>\oplus a_ <1010>= 0, [/math] следовательно [math] a_ <1010>= 1[/math]
[math]f(1,0,0,1) = a_ <0000>\oplus a_ <1000>\oplus a_ <0001>\oplus a_ <1001>= 0, [/math] следовательно [math] a_ <1001>= 1[/math]
[math]f(0,1,1,0) = a_ <0000>\oplus a_ <0100>\oplus a_ <0010>\oplus a_ <0110>= 1, [/math] следовательно [math] a_ <0110>= 1[/math]
[math]f(0,1,0,1) = a_ <0000>\oplus a_ <0100>\oplus a_ <0001>\oplus a_ <0101>= 0, [/math] следовательно [math] a_ <0101>= 0[/math]
[math]f(0,0,1,1) = a_ <0000>\oplus a_ <0010>\oplus a_ <0001>\oplus a_ <0011>= 0, [/math] следовательно [math] a_ <0011>= 0[/math]
[math]f(1,1,1,0) = a_ <0000>\oplus a_ <1000>\oplus a_ <0100>\oplus a_ <0010>\oplus a_ <1100>\oplus a_ <1010>\oplus a_ <0110>\oplus a_ <1110>= 1, [/math] следовательно [math] a_ <1110>= 0[/math]
[math]f(1,1,0,1) = a_ <0000>\oplus a_ <1000>\oplus a_ <0100>\oplus a_ <0001>\oplus a_ <1100>\oplus a_ <1001>\oplus a_ <0101>\oplus a_ <1101>= 0, [/math] следовательно [math] a_ <1101>= 0[/math]
[math]f(1,0,1,1) = a_ <0000>\oplus a_ <1000>\oplus a_ <0010>\oplus a_ <0001>\oplus a_ <1010>\oplus a_ <1001>\oplus a_ <0011>\oplus a_ <1011>= 1, [/math] следовательно [math] a_ <1011>= 0[/math]
[math]f(0,1,1,1) = a_ <0000>\oplus a_ <0100>\oplus a_ <0010>\oplus a_ <0001>\oplus a_ <0110>\oplus a_ <0101>\oplus a_ <0011>\oplus a_ <0111>= 0, [/math] следовательно [math] a_ <0111>= 1[/math]
[math]f(1,1,1,1) = a_ <0000>\oplus a_ <1000>\oplus a_ <0100>\oplus a_ <0010>\oplus a_ <0001>\oplus a_ <1100>\oplus a_ <1010>\oplus a_ <1001>\oplus a_ <0110>\oplus a_ <0101>\oplus a_ <0011>\oplus a_ <1110>\oplus a_ <1101>\oplus a_ <1011>\oplus a_ <0111>\oplus a_ <1111>= 0, [/math] следовательно [math] a_ <1111>= 1[/math]
Таким образом, полином Жегалкина выглядит так:
[math]f(x_1,x_2,x_3,x_4) = x_1 \oplus x_1 x_3 \oplus x_1 x_4 \oplus x_2 x_3 \oplus x_2 x_3 x_4 \oplus x_1 x_2 x_3 x_4[/math]
Преобразование дизъюнктивной нормальной формы [ править ]
Этот способ основан на том, что [math] X \oplus 1 = \bar
Если функция задана в СДНФ, то так как при любых значениях входных переменных в единицу обращается не более одного члена выражения, то достаточно просто заменить все дизъюнкции исключающим ИЛИ.
Пример: Дана функция в ДНФ [math] f(x_1,x_2,x_3,x_4) = (x_1 \land x_2 \land \neg x_3 \land x_4) \lor (\neg x_1 \land \neg x_4) \lor (x_1 \land x_2) \lor x_2 [/math] , построим полином Жегалкина.
Запишем функцию так:
[math]f(x_1,x_2,x_3,x_4) = x_1 x_2 \neg x_3 x_4 + \neg x_1 \neg x_4 + x_1 x_2 + x_2[/math] ;
Сгруппируем слагаемые и воспользуемся преобразованием (1):
[math]f(x_1,x_2,x_3,x_4) = (x_1 x_2 \neg x_3 x_4 \oplus \neg x_1 \neg x_4 \oplus x_1 x_2 \neg x_3 x_4 \neg x_1 \neg x_4) + (x_1 x_2 \oplus x_2 \oplus \oplus x_1 x_2 x_2)[/math]
Воспользуемся свойствами конъюнкции [math]A \land A = A[/math] и [math]\neg A \land A = 0[/math] , а также тем, что [math]A \oplus A = 0[/math] , и упростим выражение:
[math]f(x_1,x_2,x_3,x_4) = (x_1 x_2 \neg x_3 x_4 \oplus \neg x_1 \neg x_4) + x_2[/math]
Ещё раз воспользуемся преобразованием (1):
[math]f(x_1,x_2,x_3,x_4) = x_1 x_2 \neg x_3 x_4 \oplus \neg x_1 \neg x_4 \oplus x_2 \oplus (x_1 x_2 \neg x_3 x_4 \oplus \neg x_1 \neg x_4) x_2[/math]
Раскроем скобку по алгебраическим правилам:
[math]f(x_1,x_2,x_3,x_4) = x_1 x_2 \neg x_3 x_4 \oplus \neg x_1 \neg x_4 \oplus x_2 \oplus x_1 x_2 x_2 \neg x_3 x_4 \oplus \neg x_1 x_2 \neg x_4[/math]
Снова воспользуемся свойствами конъюнкции и исключающего ИЛИ:
[math]f(x_1,x_2,x_3,x_4) = \neg x_1 \neg x_4 \oplus x_2 \oplus \neg x_1 x_2 \neg x_4[/math]
Заменим отрицание на прибавление [math]1[/math] :
[math]f(x_1,x_2,x_3,x_4) = (x_1 \oplus 1) (x_4 \oplus 1) \oplus x_2 \oplus (x_1 \oplus 1) x_2 (x_4 \oplus 1)[/math]
[math]f(x_1,x_2,x_3,x_4) = x_1 x_4 \oplus x_1 \oplus x_4 \oplus 1 \oplus x_2 \oplus x_1 x_2 x_4 \oplus x_1 x_2 \oplus x_2 x_4 \oplus x_2[/math]
Выкинем парные слагаемые и получим окончательную формулу:
[math]f(x_1,x_2,x_3,x_4) = x_1 x_2 x_4 \oplus x_1 x_2 \oplus x_1 x_4 \oplus x_2 x_4 \oplus x_1 \oplus x_4 \oplus 1[/math]
Метод треугольника [ править ]
Метод треугольника позволяет преобразовать таблицу истинности в полином Жегалкина путём построения вспомогательной треугольной таблицы в соответствии со следующими правилами:
- Строится полная таблица истинности, в которой строки идут в порядке возрастания двоичных кодов от [math]000\ldots00[/math] до [math]111\ldots11[/math] .
- Строится вспомогательная треугольная таблица, в которой первый столбец совпадает со столбцом значений функции в таблице истинности.
- Ячейка в каждом последующем столбце получается путём сложения по модулю 2 двух ячеек предыдущего столбца — стоящей в той же строке и строкой ниже.
- Столбцы вспомогательной таблицы нумеруются двоичными кодами в том же порядке, что и строки таблицы истинности.
- Каждому двоичному коду ставится в соответствие один из членов полинома Жегалкина в зависимости от позиций кода, в которых стоят единицы. Например, ячейке [math]111[/math] соответствует член [math]ABC[/math] , ячейке [math]101[/math] — член [math]AC[/math] , ячейке [math]010[/math] — член [math]B[/math] , ячейке [math]000[/math] — член [math]1[/math] и т.д.
- Если в верхней строке какого-либо столбца стоит единица, то соответствующий член присутствует в полиноме Жегалкина.
Фактически, этот метод является модификацией метода построения по таблице истинности, описанного выше. По сравнению с ним он удобнее тем, что расчёты занимают мало места и в них сложнее ошибиться, но метод треугольника требует бо́льшего количества операций.
Пример преобразования таблицы истинности в полином Жегалкина для функции трёх переменных [math]P(A,B,C)[/math] показан на рисунке.
Чтобы получить формулу, по которой рассчитывается какой-либо коэффициент, нужно из клетки, в которой он записан, пройтись всеми возможными путями влево, до столбца [math]»P»[/math] таблицы истинности, делая ходы влево и влево-вниз, записать значения в конечных ячейках и сложить их все между собой по модулю 2.
Таким образом, в первом столбце сверху записан коэффициент [math] a_0 = P(0,0,0) [/math] ,
во втором — [math] a_1 = P(0,0,0) \oplus P(0,0,1) [/math] ,
в третьем — [math] a_2 = P(0,0,0) \oplus P(0,0,1) \oplus P(0,0,1) \oplus P(0,1,0) = P(0,0,0) \oplus P(0,1,0) [/math] ,
[math] a_3 = P(0,0,0) \oplus P(0,0,1) \oplus P(0,0,1) \oplus P(0,0,1) \oplus P(0,1,0) \oplus P(0,1,0) \oplus P(0,1,0) \oplus P(0,1,1) = P(0,0,0) \oplus P(0,1,0) \oplus P(0,0,1) \oplus P(0,1,1), [/math]
и так далее, то есть при построении вспомогательной таблицы коэффициенты полинома просчитываются автоматически.
Преобразование Мёбиуса [ править ]
Пусть задана булева функция [math]f: B^n \rightarrow B, \;\; B=\< 0; 1 \>[/math] . Любая булева функция представима в виде полинома Жегалкина, притом единственным образом.
Пусть [math] i = (i_1, i_2, \ldots i_n), \;\; i_k \in \<0 ; 1\>[/math] , и введем обозначение [math] x ^
Тогда полином Жегалкина можно записать как: [math] f(x) = \bigoplus\limits_i \alpha_i \cdot x_1^
Множество коэффициентов [math]\<\alpha _i\>[/math] можно рассматривать как функцию [math]\alpha[/math] , заданной на множестве индексов [math] i = (i_1, i_2, \ldots i_n)[/math] , то есть [math]\alpha: i \mapsto \alpha_i[/math] .
Очевидно, функцию [math] f [/math] можно записать и следующим образом: [math] f(x) = \bigoplus \limits_i \alpha_i \cdot [x_1 , \; [/math] если [math] \;\; i_1] \cdot [x_2 , \; [/math] если [math] \;\; i_2] \cdot[/math] [math]\ldots[/math] [math]\cdot [x_n , \; [/math] если [math] \;\; i_n][/math] .
Тут запись [math][x_k , \; [/math] если [math] \; i_k][/math] означает, что элелемент [math] x_k [/math] присутствует в соответствующем члене полинома только если [math] i_k = 1 [/math] . Тогда если для какого-то [math]x[/math] , [math]i \succ x*[/math] ,то в слагаемом будет существовать хотя бы один множитель, равный нулю, и такое слагаемое на сумму не повлияет. Отсюда ясно, что [math] f(x) = \bigoplus \limits_ \alpha_i [/math] [math] (2) [/math] Найдем отображение [math] f \mapsto \alpha[/math] (То есть такое, которое по заданной функции вычисляет значения всех коэффициентов).
[math]*[/math] [math]i \succ x[/math] обозначает, что [math]x[/math] «меньше» [math]i[/math] как последовательность бит
Докажем при помощи индукции по количеству единиц в векторе [math] x [/math] ( иначе говоря, по сумме [math]x_1+x_2+[/math] [math]\ldots[/math] [math]+x_n[/math] ) и для удобства обозначим это количество единиц(сумму) [math] wt(x) [/math] .
1) База: если [math] x = 0 [/math] , то, очевидно [math] f(0) = \alpha_0 [/math]
2) Пускай теорема справедлива для всех сумм [math]wt(x) \lt k[/math] . Покажем, что в таком случае она верна и для [math]wt(x) = k[/math] . По [math] (2) [/math] , а далее по предположению индукции видим: [math] f(x) = \bigoplus \limits_ \alpha_i = \left [ \bigoplus \limits_ \bigoplus \limits_
Рассмотрим сумму [math] \left [ \bigoplus \limits_ \bigoplus \limits_
То есть при [math]wt(x) = k[/math] формула также выполняется, значит при любых [math] x [/math] выполняется [math]\alpha_x = \bigoplus \limits_
Отображение [math] f \rightarrow \alpha[/math] также называется преобразованием Мёбиуса.
Видно, что [math] (2) [/math] и [math] (3) [/math] — это одно и тоже преобразование. Значит, если применить преобразование Мёбиуса к функции, а затем вновь применить то же преобразование к получившейся функции, тогда вновь получим исходную функцию [math]f[/math] . То есть преобразование Мёбиуса обратно самому себе, иными словами, является инволюцией.
Источник