Построение параллельных прямых двумя способами

Параллельные прямые

Две прямые называются параллельными, если они лежат на одной плоскости и не пересекаются, сколько бы их ни продолжали:

Для обозначения параллельности двух прямых используется знак || , обозначающий параллельность. Запись AB || CD (или a || b) читается так: прямая AB параллельна прямой CD (или прямая a параллельна прямой b ).

Пересечение параллельных прямых

Если несколько параллельных прямых пересечь прямой линией, то эта прямая пересечёт каждую из параллельных прямых под одним и тем же углом:

Если прямые перпендикулярны одной и той же прямой, то они параллельны.

Обе прямые m и n перпендикулярны прямой a, значит прямые m и n параллельны.

Построение параллельных прямых

На свойстве пересечения прямой линией параллельных прямых основан способ их построения с помощью угольника и линейки.

Если прямая линия уже построена, то для постройки второй линии, параллельной первой, надо расположить сторону угольника вдоль построенной линии и зафиксировать это положение линейкой:

Передвинув угольник вдоль линейки, можно провести ещё одну прямую, которая будет параллельна первой.

Источник

Построение параллельных прямых

Вы будете перенаправлены на Автор24

В основе способов построения параллельных прямых с помощью различных инструментов лежат признаки параллельности прямых.

Построение параллельных прямых с помощью циркуля и линейки

Рассмотрим принцип построения параллельной прямой, проходящей через заданную точку, с помощью циркуля и линейки.

Пусть дана прямая и некоторая точка А, которая не принадлежит данной прямой.

Необходимо построить прямую, проходящую через заданную точку $А$ параллельно данной прямой.

На практике зачастую требуется построить две или более параллельных прямых без данной прямой и точки. В таком случае необходимо начертить прямую произвольно и отметить любую точку, которая не будет лежать на данной прямой.

Рассмотрим этапы построения параллельной прямой:

  1. Выберем произвольную точку на данной прямой и назовем ее $В$. обратим внимание, что выбор точки абсолютно произвольный, т.к. не влияет на результат построения.
  2. С помощью циркуля и начертим окружность радиуса $АВ$ с центром в точке $В$.

На пересечении окружности и прямой отметим точку и назовем ее $С$.

С тем же радиусом $АВ$ построим окружность с центром в точке $С$. Обратим внимание, что вторая построенная окружность обязательно должна пройти через точку В при правильном выполнении построения.

С прежним радиусом $АВ$ построим третью окружность с центром в точке $А$.

Отметим точку пересечения второй и третьей построенных окружностей и назовем ее $D$. Отметим, что третья окружность при правильном построении также должна пройти через точку $В$.

Через точки $А$ и $D$ проведем прямую, которая будет параллельной заданной.

Таким образом, получили параллельные прямые $ВС$ и $АD$:

$BC \parallel AD$, т. $A \in AD$.

На практике также применяют метод построения параллельных прямых с помощью чертежного угольника и линейки.

Готовые работы на аналогичную тему

Построение параллельных прямых с помощью угольника и линейки

Для построения прямой, которая будет проходить через точку М параллельно данной прямой а, необходимо:

  1. Угольник приложить к прямой $а$ диагональю (смотрите рисунок), а к его большему катету приложить линейку.
  2. Передвинуть угольник по линейке до тех пор, пока данная точка $М$ не окажется на диагонали угольника.
  3. Провести через точку $М$ искомую прямую $b$.

Мы получили прямую, проходящую через заданную точку $М$, параллельную данной прямой $а$:

$a \parallel b$, т. $M \in b$.

Параллельность прямых $а$ и $b$ видна из равности соответственных углов, которые отмечены на рисунке буквами $\alpha$ и $\beta$.

Построение параллельной прямой, отстоящей на заданное расстояние от данной прямой

В случае необходимости построения прямой, параллельной заданной прямой и отстоящей от нее на заданном расстоянии можно воспользоваться линейкой и угольником.

Пусть дана прямая $MN$ и расстояние $а$.

  1. Отметим на заданной прямой $MN$ произвольную точку и назовем ее $В$.
  2. Через точку $В$ проведем прямую, перпендикулярную к прямой $MN$, и назовем ее $АВ$.
  3. На прямой $АВ$ от точки $В$ отложим отрезок $ВС=а$.
  4. С помощью угольника и линейки проведем прямую $CD$ через точку $С$, которая и будет параллельной заданной прямой $АВ$.

Если отложить на прямой $АВ$ от точки $В$ отрезок $ВС=а$ в другую сторону, то получим еще одну параллельную прямую к заданной, отстоящую от нее на заданное расстояние $а$.

Другие способы построения параллельных прямых

Еще одним способом построения параллельных прямых является построение с помощью рейсшины. Чаще всего данный способ используют в чертежной практике.

При выполнении столярных работ для разметки и построения параллельных прямых, используется специальный чертежный инструмент – малка – две деревянные планки, которые скрепляются шарниром.

Источник

Открытый урок по геометрии на тему «Практические способы построения параллельных прямых» ( 7 класс)

Выбранный для просмотра документ 16. Признаки параллельных прямых.ppt

Описание презентации по отдельным слайдам:

Без параллельных прямых невозможна наша жизнь!

замыкание, нет электричества крушение поезда

Практические способы построения параллельных прямых

Цель урока: Познакомиться с различными способами построения параллельных прямых

Повторение Какие прямые называются параллельными? Какие два отрезка называются параллельными? Что такое секущая? Назовите углы, образованные при пересечении параллельных прямых секущей. Сформулируйте признаки параллельности прямых.

Две прямые на плоскости называются параллельными, если они не пересекаются

Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны. Если при пересечении двух прямых секущей сумма односторонних углов равна 1800, то прямые параллельны. 1 2 а b c c а b 1 2 c а b 1 2 Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны. Признаки параллельности прямых

А a b c bIIc Две прямые, перпендикулярные к третьей, параллельны.

Этим способом пользуются в чертежной практике. Построение параллельных прямых с помощью рейсшины

Малка — инструмент для перенесения угловых размеров при разметке деталей, для построения параллельных прямых.

Рейсмус – инструмент для проведения на заготовке разметочных линий, параллельных выбранной базовой линии

Для одновременного прочерчивания большего количества линий, вместо рейсмуса может быть использована скоба.

a Через вершины А, В и С проведите прямые a, b, с параллельные l. C l b c А B

Рефлексия На уроке я понял… Я узнал, что … Теперь я… Мне понравилось … Я думаю…

Выбранный для просмотра документ Открытый урок по теме.docx

Без параллельных прямых невозможна наша жизнь!

Тема: Практические способы построения параллельных прямых

Тип урока: урок применения знания.

Форма урока : урок исследования объекта, постановки проблемы и ее решения.

Цели: Познакомить учащихся с различными способами построения параллельных прямых;

формулировать определение параллельных прямых, лучей и отрезков; находить их на чертеже и строить с помощью чертежных инструментов;

Научить строить параллельные прямые с помощью линейки, угольника, угольника и линейки, циркуля и линейки.

Научиться строить параллельные прямые, используя инструменты ИГС GeoGebra ;

развивать умение сравнивать, анализировать, обобщать, делать вывод, осуществлять перенос знаний и умений в новой нестандартной ситуации;

развивать умение анализировать информацию

развивать пространственные представления и умения, научить пользоваться геометрическим языком

создать условия для развития познавательного интереса к математике

воспитывать сознательное отношение к труду, расширять кругозор

воспитывать аккуратность, самостоятельность, интерес к предмету

воспитание математической культуры и речи

Формы работы учащихся: фронтальная, индивидуальная, групповая.

Оборудование: компьютер, проектор, мобильный класс, презентация к уроку: презентация учителя, рабочий лист ученика, линейка, карандаш,

Методы контроля: индивидуальная, фронтальная

Мотивация к учебной деятельности

Актуализация опорных знаний

Постановка домашнего задания

1. Организационный момент

Учитель приветствует учеников, объясняет работу урока(рабочие листы)

Ученики слушают внимательно учителя

2. Мотивация к учебной деятельности

Ребята, как вы считаете, что общего между привычной для всех вас школьной тетрадью и моделью железной дороги ( показываем тетрадь и рельсы )?

Дети высказывают свои предположения. Приводят аргументы в защиту своей версии( Все эти предметы объединяет понятие параллельности: тетради разлинованы параллельными линиями, железнодорожное полотно состоит из шпал и рельс).

А знаете ли вы, что тема параллельных прямых волновала людей с давних времен. Первый кто систематизировал знания о параллельных прямых был древнегреческий ученый – Евклид. (слайд 2)

Ученики слушают историческую справку

А как вы думаете, так ли важны параллельные прямые в нашей жизни? Каким бы был мир, если бы в нем не было параллельности? (слайд 3)

почему электрические провода параллельны?

почему рельсы параллельны?

Почему тетради в линейку?

А) При строительстве зданий строго учитывают параллельность. (отвес).

Б) железнодорожное полотно.

Если бы они не были параллельными, значит, они соприкасались друг с другом, а это привело к замыканию, пробоям, при которых электрическая цепь размыкается и ток отключается.

если бы рельсы не были параллельными, то они где-нибудь бы сходились и поезд потерпел бы крушение.

Каждому современному человеку необходимо знать как строятся параллельные прямые.

Где нам с вами может потребоваться построение параллельных прямых?

На доске, в тетради

В быту, на даче, на улице

Что необходимо нам для построения параллельных прямых?

Знания: теоретический материал

Какими инструментами мы будем пользоваться?

Линейкой, угольником, циркулем

Ребята, давайте с вами попробуем сформулировать тему урока.

Практические способы построения параллельных прямых (слайд 4)

Что мы должны узнать на уроке?

Учащиеся называют цели урока (слайд 5)

3. Актуализация знаний

Ребята, давайте вспомним теоретический материал, связанный с термином параллельность (слайд 6-10):

А что вы еще знаете о параллельных прямых?

Учащиеся задают вопросы по теме и на них отвечают.

1. Какие прямые называются параллельными?

Две прямые на плоскости называются пара лл ельными , если они не перес е каются .

2. Какие два отрезка называются параллельными? Два отрезка называются пара лл ельными , если они лежат на параллельных прямых.

3. Что такое секущая? Прямая называется секущей, если она пересекает две прямые в двух точках.

4. Назовите пары углов, которые образуются при пересечении двух прямых секущей? ( накрест лежащие, соответственные, односторонние )

5. Назовите основные признаки параллельности прямых.

1.Если при пересечении двух прямых секущей накрест лежащие углы равны , то прямые параллельны.

2. Если при пересечении двух прямых секущей соответственные углы равны , то прямые параллельны.

3. Если при пересечении двух прямых секущей сумма односторонних углов равна 180° , то прямые параллельны.

А как вы думаете, можно ли использовать эти признаки при построении параллельных прямых?

4. Физкультминутка (слайд 11)

5. Практические способы построения параллельных прямых на классной доске, в тетради

Ребята, посмотрите, какие инструменты у нас есть в классе: линейка, чертежный треугольник, циркуль.

Кто знает, как с помощью линейки построить параллельные прямые? Объясните факт параллельности.

Учащиеся отвечают на вопросы

А) Построение параллельных прямых с помощью угольника и линейки

На рис. 103 ( слайд 12 ) показан способ построения параллельных прямых на бумаге, доске.

Ребята, какие из инструментов, изображают секущую? (линейка)

Какие из инструментов, изображают угол? (чертежный треугольник)

Достаточно ли одного угольника и одной линейки для построения параллельных прямых?Объясните способ построения. На чем основан способ?

Задание 2. Постройте с помощью угольника и линейки параллельные прямые m и n .

Б) Построение параллельных прямых с помощью циркуля и линейки

Посмотрите, как можно построить параллельные прямые с помощью циркуля и линейки

Задание. Постройте с помощью циркуля и линейки параллельные прямые a и b .

Ученики по алгоритму строят параллельные прямые.

В) Построение параллельных прямых с помощью рейсшины

Изобретательская мысль человечества не стоит на месте, и для более удобного построения чертежа и проведения параллельных линий был придуман специальный чертежный инструмент – рейсшина ( слайд 18 ). Рейсшина – чертежный прибор для проведения параллельных линий, который состоит из линейки с поперечной планкой.

Малка — инструмент для перенесения угловых размеров при разметке деталей, для построения параллельных прямых. (слайд 19)

Рейсмус –инструмент для проведения на заготовке разметочных линий, параллельных выбранной базовой линии (слайд 20)

Скоба — Для одновременного прочерчивания большего количества линий (слайд 21)

Чертят ли сейчас инженеры, чертежники инструментами чертежными?

Как вы думаете, почему на ваших столах находятся компьютеры? Для чего они нам нужны? А сможет GeoGebra помочь в нашей теме?

Все чертежи делают в программах компьютерных.

Ученики отвечают на вопросы

Давайте с вами посмотрим, какие инструменты нам доступны для построения параллельных прямых? , , , , , , .

Первое задание (накрест лежащие углы) строим вместе, затем каждый самостоятельно на своих компьютерах.

Задание. Придумайте способы построения параллельных прямых в тетрадях в клетку, на чертежной плоскости с координатной сеткой.(используя предложенные инструменты).

Задание 6, 7, 8 ( для тех кто выполнил быстрее остальных ) выполняют

Ребята, давайте вспомним с помощью каких инструментов мы научились строить параллельные прямые?

Учащиеся отвечают на вопрос

Стр. 57 п. 26 рассмотреть способы построения.

Диск «Наглядная геометрия» тема 3. Задачи для самостоятельного решения (тест).

Наш урок подходит к концу. Пожалуйста, поделитесь с нами своими мыслями о сегодняшнем занятии. Вам для этого помогут слова:

На уроке я понял…

Выбранный для просмотра документ РАБОЧИЙ ЛИСТ.docx

РАБОЧИЙ ЛИСТ

Учени ___ 7 «А» класса_________________________________________________

Дата: 23.12.2014 года

Тема урока: ________________________________________________________________________

а) Определение: Две прямые на ____________________ называются параллельными , если они ______________________________________.

Источник

Читайте также:  Способ удаления полипа эндометрия
Оцените статью
Разные способы