66. Построение линии пересечения поверхностей способом вспомогательных сфер
При построении линии пересечения поверхностей особенности пересечения соосных поверхностей вращения позволяют в качестве вспомогательных поверхностей-посредников использовать сферы, со-осные с данными поверхностями.
К соосным поверхностям вращения относятся поверхности, имеющие общую ось вращения. На рис. 134 изображены соосные цилиндр и сфера (рис. 134, а), соосные конус и сфера (рис. 134, б) и соосные цилиндр и конус (рис. 134, в).
Соосные поверхности вращения всегда пересекаются по окружностям, плоскости которых перпендикулярны оси вращения. Этих общих для обеих поверхностей окружностей столько, сколько существует точек пересечения очерковых линий поверхностей. Поверхности на рис. 134 пересекаются по окружностям, создаваемым точками 1 и 2 пересечения их главных меридианов.
Вспомогательная сфера-посредник пересекает каждую из заданных поверхностей по окружности, в пересечении которых получаются точки, принадлежащие и другой поверхности, а значит, и линии пересечения.
Если оси поверхностей пересекаются, то вспомогательные сферы проводят из одного центра-точки пересечения осей. Линию пересечения поверхностей в этом случае строят способом вспомогательных концентрических сфер.
При построении линии пересечения поверхностей для использования способа вспомогательных концентрических сфер необходимо выполнение следующих условий:
1) пересечение поверхностей вращения;
2) оси поверхностей — пересекающиеся прямые — параллельны одной из плоскостей проекций, т. е. имеется общая плоскость симметрии;
3) нельзя использовать способ вспомогательных секущих плоскостей, так как они не дают графически простых линий на поверхностях.
Обычно способ вспомогательных сфер используется в сочетании со способом вспомогательных секущих плоскостей. На рис. 135 построена линия пересечения двух конических поверхностей вращения с пересекающимися во фронтальной плоскости уровня Ф (Ф1) осями вращения. Значит, главные меридианы этих поверхностей пересекаются и дают в своем пересечении точки видимости линии пересечения относительно плоскости П2или самую высокую А и самую низкую В точки. В пересечении горизонтального меридиана h и параллели h’, лежащих в одной вспомогательной секущей плоскости Г(Г2), определены точки видимости С и D линии пересечения относительно плоскости П1. Использовать вспомогательные секущие плоскости для построения дополнительных точек линии пересечения нецелесообразно, так как плоскости, параллельные Ф, будут пересекать обе поверхности по гиперболам, а плоскости, параллельные Г, будут давать в пересечении поверхностей окружности и гиперболы. Вспомогательные горизонтально или фронтально проецирующие плоскости, проведенные через вершину одной из поверхностей, будут пересекать их по образующим и эллипсам. В данном примере выполнены условия, позволяющие применение вспомогательных сфер для построения точек линии пересечения. Оси поверхностей вращения пересекаются в точке О (О1; О2), которая является центром вспомогательных сфер, радиус сферы изменяется в пределах
Rmin 2 ) и пересекающей другую (по окружности h 3 ).
Плоскости этих окружностей перпендикулярны осям вращения поверхностей. В пересечении этих окружностей получаем точки Е и F, принадлежащие линии пересечения поверхностей:
Промежуточная сфера радиуса R пересекает поверхности по окружностям h 4 и h 5 , в пересечении которых находятся точки Ми N:
Соединяя одноименные проекции построенных точек с учетом их видимости, получаем проекции линии пересечения поверхностей.
Источник
Построение линий пересечения поверхностей способом вспомогательных секущих сфер
Две любые соосные поверхности вращения пересекаются по окружностям, число которых равно числу точек пересечения главных полумеридианов этих поверхностей. При этом плоскости окружностей сечения перпендикулярны оси поверхностей вращения, а центры окружностей принадлежат этой оси. Поэтому если оси поверхностей вращения параллельны плоскости проекции, то на эту плоскость окружности сечения проецируются в отрезки прямых, перпендикулярных проекциям оси вращения.
В качестве вспомогательной секущей поверхности вращения целесообразно использовать удобную для вычерчивания сферическую поверхность, центр которой должен принадлежать оси поверхности вращения (рис. 1.73). Здесь сфера Σ (i,m) пересекается с поверхностью вращения Ф(i,n) по окружностям, т. к. полумеридианы поверхности вращения и сферы имеют две точки пересечения – A и В.
При построении линий пересечения двух поверхностей способом вспомогательных секущих сфер возможны два случая. В одном из них используют сферы, проведенные из одного общего для всех сфер центра, а в другом – сферы, проведенные из разных центров. В первом случае имеем способ концентрических сфер, во втором – способ эксцентрических сфер.
Рассмотрим каждый случай в отдельности.
1.7.4.1.Способ вспомогательных секущих концентрических сфер.
Этот способ можно использовать, если выполняются следующие условия:
— пересекаются две поверхности вращения;
— оси поверхностей вращения пересекаются;
— плоскость, образованная пересекающимися осями (общая плоскость симметрии поверхностей), параллельна одной из плоскостей проекций. Именно на этой плоскости проекций и проводят вспомогательные секущие сферы, центр которых лежит в точке пересечения осей.
Рассмотрим пример. Построить линию пересечения цилиндра и конуса вращения, оси которых i и j пересекаются в некоторой точке Ои параллельны плоскости проекций П2 (рис. 1.74).
Вначале должны быть построены некоторые опорные точки. Так как обе данные поверхности имеют общую плоскость симметрии, параллельную плоскости проекций П2, то их контурные образующие, по отношению к плоскости П2, пересекаются. Точки А, В, С и Dпересечения этих образующих являются точками видимости линии пересечения поверхностей. Эти точки ограничивают фронтальную проекцию линии пересечения.
Далее следует определить радиусы максимальной и минимальной сфер, пригодных для отыскания точек линии пересечения.
Радиус максимальной сферы Rmax равен расстоянию от проекции О2 центра сфер до наиболее удаленной точки пересечения очерковых образующих, в данном случае до точки A2.
Чтобы определить радиус наименьшей сферы Rmin, необходимо провести через точку О2нормали к очерковым образующим данных поверхностей. Тогда больший из отрезков этих нормалей и будет Rmin. В этом случае сфера минимального радиуса будет касаться одной из данных поверхностей, а совторой – пересекаться. Если же взять в качестве Rmin меньший отрезок, то одна из данных поверхностей с такой сферой не пересечется. В данном примере сферой минимального радиуса будет сфера, касающаяся цилиндрической поверхности. Эта сфера касается цилиндрической поверхности по окружности 1 – 2; коническую поверхность она пересекает по двум окружностям 3 – 4и 5 – 6. Точки Е, Fи G, Нпересечения этих окружностей будут точками искомой линии пересечения.
Для построения других точек линии пересечения проводят несколько концентрических сфер с центром в точке О, причем радиус Rэтих сфер должен изменяться в пределах Rmin
1.7.4.2.Способ вспомогательных секущих эксцентрических сфер.
Этот способ можно использовать, если выполняются следующие условия:
— пересекаются две поверхности, которые имеют общую плоскость симметрии;
— каждая из этих поверхностей должна содержать семейство окружностей, по которым ее могут пересекать эксцентрические сферы, общие для обеих поверхностей.
Рассмотрим пример. Построить линию пересечения поверхности тора с конической поверхностью вращения, которые имеют общую фронтальную плоскость симметрии (рис. 1.75).
По аналогии с предыдущей задачей строим точки А и В пересечения контура поверхности тора с контуром конической поверхности. Точка А является наивысшей точкой искомой линии, а точка В – наинизшей.
Для построения произвольных точек линии пересечения в данной задаче нельзя воспользоваться способом вспомогательных концентрических сфер: хотя обе поверхности и являются поверхностями вращения, но их оси i 1 и i 2 не пересекаются. Способом же эксцентрических сфер, центры которых находятся в различных точках оси i 2 конической поверхности, можно найти сколько угодно произвольных точек линии пересечения.
Действительно, у поверхности тора, кроме семейства окружностей (параллелей), расположенных в плоскостях, перпендикулярных оси i 1 , имеется семейство окружностей (меридианов), расположенных в плоскостях, проходящих через ось i 1 . Центры сфер, пересекающих поверхность тора по этим окружностям, будут находиться на перпендикулярах к плоскостям этих окружностей, проведенных через их центры С 1 , С 2 , С 3 , . . Поэтому если взять центры эксцентрических сфер в точках О 1 , О 2 , О 3 , . пересечения этих перпендикуляров с осью i 2 конической поверхности, то сферы соответствующих радиусов пересекут обе данные поверхности по окружностям. Точки пересечения окружностей обеих поверхностей, принадлежащих одной и той же сфере, и будут точками искомой линии пересечения.
На рис. 1.75 проведены три эксцентрические сферы из центров О 1 , О 2 и О 3 , с помощью которых найдены случайные точки линии пересечения. Так, для построения точек Ми Nпроведен меридиан 3 – 4поверхности тора, расположенный во фронтально проецирующей плоскости, проходящей через ось i 1 (i2 1 ), и из его центра С 1 (Сг 1 )восстановлен перпендикуляр к этой плоскости. В точке О 1 (О2 1 ) пересечения перпендикуляра с осью i 2 (i2 2 ) и будет находиться центр вспомогательной сферы. Если теперь провести сферу с центром в точке О 1 (О2 1 ) такого радиуса R, чтобы ей принадлежала окружность 3 – 4, то эта сфера, пересекая коническую поверхность по некоторой окружности 1 – 2, определит в пересечении окружностей 1 – 2 и 3 – 4 искомые точки Ми N.
Горизонтальные проекции точек пересечения можно найти с помощью графически простых линий поверхности тора, которыми являются ее параллели. Так, горизонтальные проекции М1 и N1 точек Ми N построены при помощи параллелей j 1 и j 2 поверхности тора. Точки видимости Ри Qконической поверхности для плоскости P1 построены приближенно, их фронтальные проекции найдены в пересечении фронтальных проекций линии пересечения и оси i 2 конуса.
Источник
Построение линии пересечения поверхностей способ вспомогательных сфер
При определении линии пересечения двух поверхностей вращения, при их особом взаимном расположении, не всегда рационально применять вспомогательные секущие плоскости. В некоторых случаях применяют метод вспомогательных секущих сфер – концентрических или эксцентрических.
Концентрические сферические посредники применяются при определении линии пересечения двух поверхностей вращения с пересекающимися осями.
Каждая из этих поверхностей имеет семейство окружностей, являющихся линиями сечения их концентрическими сферами. Применению метода концентрических сфер должно предшествовать такое преобразование чертежа, в результате которого оси обеих поверхностей должны быть расположены параллельно одной и той же плоскости проекций (рис.151) или одна из осей становиться проецирующей прямой, а вторая — линией уровня (рис.152).
| | | |
| |||
| |||
| |||
а) модель | б) эпюр | ||
Оси поверхностей G и Q параллельны фронтальной плоскости проекций и пересекаются в точки А (рис.151). Эта точка принимается за центр всех вспомогательных концентрических сфер. Каждая из концентрических сфер пересекает поверхности по окружностям — параллелям (а, b, c, d, n), фронтальные проекции которых являются прямыми линиями (а2, b2, c2, d2, n2). Проекции точек 12, 22, 32, 42, 52 и 62 пересечения проекций параллелей принадлежат проекции искомой линии пересечения поверхностей. Пересечение главных фронтальных меридианов поверхностей определяют положение верхней и нижней точек (7 и 8) линии.
Для точного построения линии пересечения поверхностей необходимо найти точки 9 и 10, которые определяют границу зоны видимости линии пересечения поверхностей на горизонтальной проекции. Для этой цели использовалась вспомогательная секущая плоскость b , которая пересекает поверхность Q по линии m, а поверхность G по образующим, горизонтальные проекции которых пересекаясь определяют положение искомых точек.
Соединив найденные точки 1. 10 с учетом видимости получим линию пересечения поверхностей.
Рисунок 152. Пересечение поверхностей вращения,
ось одной — горизонтально проецирующая
прямая, а второй — горизонталь
Вторым примером использования в качестве вспомогательных поверхностей посредников концентрических сфер рассмотрим при определении линии пересечения поверхностей предложенных на рисунке 152. Оси поверхностей вращения G и Q пересекаются в точки А , при этом ось поверхности Q — горизонтально проецирующая прямая, а ось поверхности G — горизонталь. Точка А принимается за центр всех вспомогательных концентрических сфер.
Точки 1 и 2 линии пересечения построены с помощью сферы радиуса R. Эта сфера пересекает поверхность Q по окружности а, а поверхность G по окружности b , которая показана только на горизонтальной проекции. Пересечение горизонтальных проекций окружностей а1 и b 1 определяют проекции 11 и 21 точек линии пересечения. Их фронтальные проекции 12 и 22 построены на а2 пересечении с линиями связи.
Для нахождения точек 5 и 6 определяющих границу зоны видимости на горизонтальной проекции, использовалась вспомогательная секущая плоскость b , которая пересекает поверхность Q по окружность n, а коническую поверхность G по треугольнику, определяющему ее очерк на горизонтальной проекции.
Точки 7 и 8 находятся на границе зоны видимости фронтальной проекции, для их нахождения используется вспомогательная секущая плоскость g .
Соединив найденные точки 1. 8 с учетом видимости получим линию пересечения поверхностей G и Q.
Эксцентрические сферические посредники применяются при определении точек линии пересечения поверхностей вращения с поверхностью несущей на себе непрерывное множество окружностей. Обе поверхности должны иметь общую плоскость симметрии. Вспомогательные эксцентрические сферы пересекаются с данными поверхностями по окружностям.
| | | |
| |||
| |||
| |||
а) модель | б) эпюр | ||
Определения линии пересечения конуса и сферы применение эксцентричных сфер, как поверхностей — посредников. Центры сфер — точки расположены на оси конуса. Сфера пересекает конус и сферу по окружностям , которые пересекаются в двух точках, принадлежащих искомой линии пересечения (рис.153а).
Верхняя и нижняя точки линии пересечения найдены с помощью вспомогательной секущей плоскости — плоскости главного фронтального меридиана, пересекающая конус и сферу по треугольнику и окружности, являющимися очерками поверхностей на фронтальной плоскости проекций.
Точки, определяющие границу зоны видимости линии пересечения на горизонтальной плоскости проекций, найдены с помощью вспомогательной секущей плоскости — горизонтальной плоскости уровня, пересекающей сферу по экватору — окружности являющейся очерком шара на горизонтальной проекции, а конус по окружности — параллели.
Точки, найденные с помощью вспомогательных поверхностей посредников, определяют линию пересечения конуса и шара.
Рассмотрим, на примере определения линии пересечения конуса Q и сферы G (рис.153б), применение эксцентричных сфер, как поверхностей — посредников. Центры сфер — точки А 1 , А 2 и А 3 расположены на оси конуса. Сфера радиуса R 1 с центром в точке А 1 пересекает конус и сферу по окружностям а и в, которые пересекаются в точках 1 и 2, принадлежащих искомой линии пересечения. С помощью сферы R 2 с центром А 2 и сферы R 3 с центром А 3 определено положение точек 3, 4 и 5,6 соответственно. Точки 7 и 8 найдены с помощью вспомогательной секущей плоскости a (плоскости фронтального меридиана), пересекающей конус и сферу по главным фронтальным меридианам k и l . Точки 9 и 10, определяющие границу зоны видимости линии пересечения на горизонтальной плоскости проекций, найдены с помощью вспомогательной секущей плоскости b (горизонтальной плоскости уровня), пересекающей сферу G по экватору s, а конус Q по окружности p. Точки 1. 10, построенные с помощью вспомогательных поверхностей посредников, определяют линию пересечения конуса и шара.
Источник