Последовательный способ возбуждения машин постоянного тока

Содержание
  1. Последовательное, параллельное и смешанное возбуждение в двигателях постоянного тока

    Электродвигатель постоянного тока работает от источников постоянного тока. В электродвигателе происходит превращение электрической энергии в механическую. Электрический двигатель постоянного тока состоит из ротора (якоря) и статора (индуктора, магнита, обмотки возбуждения). Статор может быть либо постоянным магнитом, либо электромагнитом. Якорь во многих электродвигателях представляет собой проволочные петли, надетые на сердечник из мягкого железа, на котором реверсируется питание его обмотки (посредством коммутатора или управляющей электронной схемы). Большинство двигателей, работающих на постоянном токе, имеют коммутатор, состоящий из коллектора и щеток. Щетки установлены на статоре и не вращаются, а коллектор соединен с катушкой установленной на роторе (якоре). Современные бесколлекторные двигатели (или бесщеточные двигатели, BLDC) имеют якорь из постоянных магнитов и не имеют коллектора и щеток, а работают со специальной электронной схемой. Якорь двигателя двигателя постоянного тока имеет очень низкое сопротивление. По этой причине при запуске двигателя последовательно с ним включается переменное сопротивление, которое выводится по мере того, как якорь набирает скорость. Когда проводник с током вносится в магнитное поле, на него начинает действовать сила, зависящая от трех факторов: от напряженности поля, от величины тока и от длины проводника. Сила, приводящая во вращение якорь электродвигателя, зависит от тех же трех факторов. При этом эффективная длина обмотки приблизительно равна удвоенной длине якоря, умноженной на число витков. Двигатель постоянного тока в разобранном виде Электромагнит двигателя постоянного тока можно возбудить тремя различными способами, и в каждом из этих способов возбуждения двигатель работает по-разному. Обмотка электромагнита и якорь могут быть соединены тремя способами: последовательно (сериесное возбуждение), параллельно (шунтовое возбуждение) и смешанно (компаунд-возбуждение). В электродвигателе постоянного тока с последовательным возбуждением весь ток проходит как через якорь, так и через обмотку электромагнита. Следовательно, вращающий момент, действующий на якорь, изменяется пропорционально квадрату тока, поскольку крутящее усилие зависит от тока в якоре и от напряженности магнитного поля, которая линейно меняется в зависимости от тока в обмотке электромагнита. В результате, когда действие большой нагрузки замедляет вращение якоря двигателя с последовательным возбуждением, так что обратная э. д. с. становится малой, то через якорь и обмотку электромагнита идет сильный ток, создающий значительную силу для вращения якоря. Двигатели постоянного тока с последовательным возбуждением используются в трамваях, электровозах, автомобильных стартерах и в других машинах, которые работают в условиях быстро прикладываемых значительных нагрузок. Обычно такие двигатели соединяются с приводимыми в движение машинами с помощью шестереночных, а не ременных передач, поскольку если при работе двигателя нагрузка на него резко снижается, то двигатель разгоняется до опасной скорости (они не имеют ограничения скорости) . На холостом ходу двигатель может работать на высоких оборотах, когда существует риск механического разрыва ротора с возможным травмированием оператора. Современные технологии с преобразователем частоты позволяют полностью и в равной степени заменить такие двигатели на трехфазные асинхронные двигатели, а в последних разработках — на трехфазные синхронные двигатели с постоянными магнитами на роторе. Обладая такой же мощностью и такими же характеристиками крутящего момента, они меньше, легче и позволяют рекуперацию энергии, если это позволяют условия эксплуатации источника питания. Схема подключения электродвигателя В двигателя постоянного тока с параллельным возбуждением ток разветвляется, одна часть его идет через якорь, а другая — через обмотку электромагнита. При этом полный ток в обеих ветвях равен току, питающему двигатель. В результате вращающий момент якоря пропорционален первой степени тока, тогда как в двигателях с последовательным возбуждением этот момент меняется как квадрат тока. Когда якорь двигателя с параллельным возбуждением начинает вращаться медленнее при повышении нагрузки на двигатель, через якорь пойдет больший, а через обмотку электромагнита — меньший ток. В результате вращающий момент останется неизменным. Поэтому двигатель в течение всего времени, пока к нему приложена нагрузка, будет работать на скорости, пониженной по сравнению с его холостым ходом. Такое подключение двигателя позволяет независимо регулировать и определять ток в обмотке возбуждения статора и обмотке ротора (якорь). Это позволяет изменять скорость и крутящий момент двигателя. Двигатели с параллельным возбуждением непригодны для больших нагрузок. По этой причине они находят применение в таких установках, где нагрузка постоянная и где требуется постоянная скорость вращения, например электрических вентиляторах, воздуходувках, жидкостных насосах и т. п. Электродвигатели постоянного тока со смешанным возбуждением имеют две обмотки возбуждения (одну для параллельного включения, другую — для последовательного). Они не разгоняются при ослаблении нагрузки и вместе с тем пригодны для больших нагрузок. Почему это так, предоставляю объяснить читателю и поделиться своими идеями в комментарии к статье. Двигатели этого типа применяются в подъемниках, штамповочных прессах и других машинах, где в начальный момент работы машины необходимы значительные усилия. Последовательное возбуждение во многих случаях выключается после набора двигателем определенной скорости. Вопрос. Какого вида возбуждения двигатель постоянного тока показан на фотографии в статье? Источник Способы возбуждения машин постоянного тока и их классификация Ток, протекающий в обмотке возбуждения основных полюсов, создает магнитный поток . Электрические машины постоянного тока следует различать по способу возбуждения и схеме включения обмотки возбуждения. Генераторы постоянного тока могут выполняться с независимым, параллельным, последовательным и смешанным возбуждением. Следует заметить, что теперь применение в качестве источников энергии генераторов постоянного тока очень ограничено. Обмотка возбуждения генератора постоянного тока с независимым возбуждением получает питание от независимого источника — сети постоянного тока, специального возбудителя , преобразователя и др. (рис. 1, а). Эти генераторы применяются в мощных системах, когда напряжение возбуждения должно быть выбрано отличным от напряжения генератора, в системах регулирования скорости вращения двигателей, которые питаются от генераторов и других источников. Значение тока возбуждения мощных генераторов составляет 1,0—1,5% от тока генераторов и до десятков процентов для машин мощностью порядка десятков ватт. Рис. 1. Схемы генераторов постоянного тока: а — с независимым возбуждением; б — с параллельным возбуждением; в — с последовательным возбуждением; г — со смешанным возбуждением П — потребители У г енератора с параллельным возбуждением обмотка возбуждения включается на напряжение самого генератора (смотрите рис. 1,б). Ток якоря I я равен сумме токов нагрузки I п и тока возбуждения I в: I я = I п + I в Генераторы выполняются обычно для средних мощностей. Обмотка возбуждения генератора с последовательным возбуждением включена последовательно в цепь якоря и обтекается током якоря (рис. 1, в). Процесс самовозбуждения генератора протекает очень бурно. Такие генераторы практически не используются. В самом начале развития энергетики применялась система передачи энергии с последовательно включенными генераторами и двигателями последовательного возбуждения. Генератор со смешанным возбуждением имеет две обмотки возбуждения — параллельную ОВП и последовательную ОВС обычно с согласным включением (рис. 1, г). Параллельная обмотка может быть включена до последовательной («короткий шунт») или после нее («длинный шунт»). МДС последовательной обмотки обычно невелика и рассчитана только на компенсацию падения напряжения в якоре при нагрузке. Такие генераторы теперь также практически не применяются. Схемы возбуждения двигателей постоянного тока подобны схемам для генераторов. Двигатели постоянного тока большой мощности выполняются обычно с независимым возбуждением . У двигателей параллельного возбуждения обмотка возбуждения получает питание от того же источника энергии, что и двигатель. Обмотка возбуждения включается непосредственно на напряжение источника энергии, чтобы не сказывалось влияние падения напряжения в пусковом сопротивлении (рис. 2). Рис. 2. Схема двигателя постоянного тока с параллельным возбуждением Ток сети Ic составляется из тока якоря I я и тока возбуждения I в. Схема двигателя последовательного возбуждения подобна схеме на рис. 1, в. Благодаря последовательной обмотке вращающий момент при нагрузке возрастает больше, чем у двигателей параллельного возбуждения, при этом скорость вращения уменьшается. Это свойство двигателей определяет их широкое применение в приводах электровозной тяги: в магистральных электровозах, городском транспорте и др. Падение напряжения в обмотке возбуждения при номинальном токе составляет единицы процентов от номинального напряжения. Двигатели смешанного возбуждения из-за наличия последовательной обмотки в некоторой мере имеют свойства двигателей последовательного возбуждения. В настоящее время они практически не применяются. Двигатели параллельного возбуждения иногда выполняются со стабилизирующей (последовательной) обмоткой, включаемой согласно с параллельной обмоткой возбуждения, для обеспечения более спокойной работы при пиках нагрузки. МДС такой стабилизирующей обмотки невелика — единицы процентов от основной МДС. Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта! Подписывайтесь на наш канал в Telegram! Просто пройдите по ссылке и подключитесь к каналу. Не пропустите обновления, подпишитесь на наши соцсети: Источник Способы возбуждения машин постоянного тока Работа и свойства электрических машин постоянного тока (как генераторов, так и двигателей) в значительной степени зависят от способа возбуждения в них магнитного потока. Действительно, магнитный поток входит множителем как в выражение ЭДС, так и в выражение электромагнитного момента, поэтому необходимо знать, как создается магнитный поток, от каких величин он зависит, как и для какой цели нужно изменять его значение. Согласно ГОСТов, по способу возбуждения машины постоянного тока классифицируют следующим образом: а) машины независимого возбуждения, обмотка возбуждения которых питается от постороннего источника электрического тока; б) машины параллельного возбуждения, обмотка возбуждения которых соединена параллельно с цепью якоря; в) машины последовательного возбуждения, обмотка возбуждения которых соединена последовательно с цепью якоря; г) машины смешанного возбуждения, у которых имеются две обмотки возбуждения, одна из которых соединена последовательно с цепью якоря (другая — может быть либо независимой, либо, чаще, параллельной). Если МДС обмоток возбуждения имеют одно направление, то такое их включение называется согласным. Если же МДС обмоток направлены в разные стороны, то включение называется встречным. Схемы всех четырех типов машин показаны соответственно на рис. 1. Все эти электрические машины имеют одинаковое устройство и отличаются лишь выполнением обмотки возбуждения (ОВ). Обмотки независимого и параллельного возбуждения изготавливают с большим числом витков, из провода малого сечения, а обмотку последовательного возбуждения — с малым числом витков из провода большого сечения. Существуют также машины небольшой мощности, магнитное поле у которых создается либо только постоянными магнитами, либо еще и обмотками возбуждения, питаемыми электрическим током. Свойства первых близки к свойствам машин независимого, а вторых — смешанного или независимого возбуждения (в зависимости от способа подключения обмотки возбуждения). Рис. 1. Схемы электрических машин постоянного тока независимого (а), параллельного (6), последовательного (в) и смешанного (г) возбуждений Во всех машинах на возбуждение расходуется от 0,5 % до 5 % номинальной мощности машины, причем первое значение относится к очень мощным машинам, а второе — к машинам мощностью около 1 кВт. Как видно из рис. 1, значение тока возбуждения /в машины независимого возбуждения не зависит от тока якоря и определяется напряжением источника питания, причем для регулирования тока /в последовательно в цепь обмотки возбуждения включают резистор. У машины параллельного возбуждения, согласно закону Ома, /в = Ur/(RB + Rр), (1) где RB — сопротивление обмотки возбуждения, a Rp — последовательно с нею включаемого регулировочного резистора. У машин последовательного возбуждения /в = /я. Согласно ГОСТ 2582—81, выводы всех обмоток маркируются следующим образом: Я1 и Я2 — начало и конец обмотки якоря; С1 и С2 — начало и конец последовательной (сериесной) обмотки возбуждения; Ш1 и Ш2 — начало и конец параллельной (шунтовой) обмотки возбуждения; К1 и К2 — начало и конец компенсационной обмотки; Н1 и Н2 — начало и конец обмотки независимого возбуждения; Д1 и Д2 — начало и конец обмотки добавочных полюсов. Возможны случаи, когда машина имеет несколько обмоток одного наименования. В этом случае их начала и концы после буквенных обозначений должны иметь две цифры: первая указывает порядковый номер обмотки, a вторая,, — начало (1) или конец (2). Например, начало второй параллельной обмотки возбуждения будет иметь обозначение Ш21. Источник Возбуждение двигателя постоянного тока. Схемы возбуждения. Возбуждение двигателя постоянного тока является отличительной особенностью таких двигателей. От типа возбуждения зависят механические характеристики электрических машин постоянного тока. Возбуждение может быть параллельным последовательным смешанным и независимым. Тип возбуждения означает, в какой последовательности включены обмотки якоря и ротора. При параллельном возбуждении обмотки якоря и ротора включаются параллельно друг другу к одному источнику тока. Так как у обмотки возбуждения больше витков чем у якорной то и ток в ней течет незначительный. В цепи, как обмотки ротора, так и обмотки якоря могут включаться регулировочные сопротивления. Обмотка возбуждения может подключаться и к отдельному источнику тока. В этом случае возбуждение будет называться независимым. У такого двигателя характеристики будут схожи с двигателем, в котором применяется постоянный магнит. Скорость вращения двигателя с независимым возбуждением, как и у двигателя с параллельным возбуждением зависит от тока якоря и основного магнитного потока. Основной магнитный поток создается обмоткой ротора. Скорость вращения можно регулировать с помощью реостата включенного в цепь якоря изменяя тем самым ток в нем. Также можно регулировать ток возбуждения, но здесь нужно быть осторожным. Так как при его чрезмерном уменьшении или полном отсутствии в результате обрыва питающего провода ток в якоре может возрасти до опасных значений. Также при малой нагрузке на валу или в режиме холостого хода скорость вращения может настолько увеличится, что может привести к механическому разрушению двигателя. Если обмотка возбуждения включена последовательно с якорной, то такое возбуждение называется последовательным. При этом через якорь и обмотку возбуждения протекает один и тот же ток. Таким образом, магнитный поток изменяется с изменением нагрузки двигателя. А следовательно скорость двигателя будет зависеть от нагрузки. Двигатели с таким возбуждением нельзя запускать на холостом ходу либо с небольшой нагрузкой на вал. Их применяют в том случае если, требуется большой пусковой момент или способность выдерживать кратковременные перегрузки. При смешанном возбуждении используются двигатели, у которых на каждом полюсе есть по две обмотки. Их можно включить так чтобы магнитные потоки как складывались, так и вычитались. В зависимости от того как соотносятся магнитные потоки двигатель с таким возбуждением может работать как двигатель с последовательным так и двигатель с параллельным возбуждением. Все зависит от ситуации, если нужен большой стартовый момент, такая машина работает в режиме согласного включения обмоток. Если же необходима постоянная скорость вращения, при динамически изменяющейся нагрузке применяют встречное включение обмоток. В машинах постоянного тока можно изменять направление движения ротора. Для этого необходимо изменить направление тока в одной из обмоток. Якорной либо возбуждения. Изменением полярности направление вращения двигателя можно добиться только в двигателе с независимым возбуждением, или в котором используется постоянный магнит. В других схемах включения нужно переключать одну из обмоток. Стартовый ток в машине постоянного тока достаточно велик, поэтому ее следует запускать с добавочным реостатом, чтобы избежать повреждения обмоток. Источник
  2. Способы возбуждения машин постоянного тока и их классификация
  3. Способы возбуждения машин постоянного тока
  4. Возбуждение двигателя постоянного тока. Схемы возбуждения.
Читайте также:  Лучший способ выучить язык с нуля

Последовательное, параллельное и смешанное возбуждение в двигателях постоянного тока

Электродвигатель постоянного тока работает от источников постоянного тока. В электродвигателе происходит превращение электрической энергии в механическую.

Электрический двигатель постоянного тока состоит из ротора (якоря) и статора (индуктора, магнита, обмотки возбуждения). Статор может быть либо постоянным магнитом, либо электромагнитом.

Якорь во многих электродвигателях представляет собой проволочные петли, надетые на сердечник из мягкого железа, на котором реверсируется питание его обмотки (посредством коммутатора или управляющей электронной схемы).

Большинство двигателей, работающих на постоянном токе, имеют коммутатор, состоящий из коллектора и щеток. Щетки установлены на статоре и не вращаются, а коллектор соединен с катушкой установленной на роторе (якоре).

Современные бесколлекторные двигатели (или бесщеточные двигатели, BLDC) имеют якорь из постоянных магнитов и не имеют коллектора и щеток, а работают со специальной электронной схемой.

Якорь двигателя двигателя постоянного тока имеет очень низкое сопротивление. По этой причине при запуске двигателя последовательно с ним включается переменное сопротивление, которое выводится по мере того, как якорь набирает скорость.

Когда проводник с током вносится в магнитное поле, на него начинает действовать сила, зависящая от трех факторов: от напряженности поля, от величины тока и от длины проводника.

Сила, приводящая во вращение якорь электродвигателя, зависит от тех же трех факторов. При этом эффективная длина обмотки приблизительно равна удвоенной длине якоря, умноженной на число витков.

Двигатель постоянного тока в разобранном виде

Электромагнит двигателя постоянного тока можно возбудить тремя различными способами, и в каждом из этих способов возбуждения двигатель работает по-разному.

Обмотка электромагнита и якорь могут быть соединены тремя способами: последовательно (сериесное возбуждение), параллельно (шунтовое возбуждение) и смешанно (компаунд-возбуждение).

В электродвигателе постоянного тока с последовательным возбуждением весь ток проходит как через якорь, так и через обмотку электромагнита.

Следовательно, вращающий момент, действующий на якорь, изменяется пропорционально квадрату тока, поскольку крутящее усилие зависит от тока в якоре и от напряженности магнитного поля, которая линейно меняется в зависимости от тока в обмотке электромагнита.

В результате, когда действие большой нагрузки замедляет вращение якоря двигателя с последовательным возбуждением, так что обратная э. д. с. становится малой, то через якорь и обмотку электромагнита идет сильный ток, создающий значительную силу для вращения якоря.

Двигатели постоянного тока с последовательным возбуждением используются в трамваях, электровозах, автомобильных стартерах и в других машинах, которые работают в условиях быстро прикладываемых значительных нагрузок.

Обычно такие двигатели соединяются с приводимыми в движение машинами с помощью шестереночных, а не ременных передач, поскольку если при работе двигателя нагрузка на него резко снижается, то двигатель разгоняется до опасной скорости (они не имеют ограничения скорости) . На холостом ходу двигатель может работать на высоких оборотах, когда существует риск механического разрыва ротора с возможным травмированием оператора.

Современные технологии с преобразователем частоты позволяют полностью и в равной степени заменить такие двигатели на трехфазные асинхронные двигатели, а в последних разработках — на трехфазные синхронные двигатели с постоянными магнитами на роторе.

Обладая такой же мощностью и такими же характеристиками крутящего момента, они меньше, легче и позволяют рекуперацию энергии, если это позволяют условия эксплуатации источника питания.

Схема подключения электродвигателя

В двигателя постоянного тока с параллельным возбуждением ток разветвляется, одна часть его идет через якорь, а другая — через обмотку электромагнита. При этом полный ток в обеих ветвях равен току, питающему двигатель.

В результате вращающий момент якоря пропорционален первой степени тока, тогда как в двигателях с последовательным возбуждением этот момент меняется как квадрат тока.

Когда якорь двигателя с параллельным возбуждением начинает вращаться медленнее при повышении нагрузки на двигатель, через якорь пойдет больший, а через обмотку электромагнита — меньший ток.

В результате вращающий момент останется неизменным. Поэтому двигатель в течение всего времени, пока к нему приложена нагрузка, будет работать на скорости, пониженной по сравнению с его холостым ходом.

Такое подключение двигателя позволяет независимо регулировать и определять ток в обмотке возбуждения статора и обмотке ротора (якорь). Это позволяет изменять скорость и крутящий момент двигателя.

Двигатели с параллельным возбуждением непригодны для больших нагрузок. По этой причине они находят применение в таких установках, где нагрузка постоянная и где требуется постоянная скорость вращения, например электрических вентиляторах, воздуходувках, жидкостных насосах и т. п.

Электродвигатели постоянного тока со смешанным возбуждением имеют две обмотки возбуждения (одну для параллельного включения, другую — для последовательного). Они не разгоняются при ослаблении нагрузки и вместе с тем пригодны для больших нагрузок. Почему это так, предоставляю объяснить читателю и поделиться своими идеями в комментарии к статье.

Двигатели этого типа применяются в подъемниках, штамповочных прессах и других машинах, где в начальный момент работы машины необходимы значительные усилия. Последовательное возбуждение во многих случаях выключается после набора двигателем определенной скорости.

Вопрос. Какого вида возбуждения двигатель постоянного тока показан на фотографии в статье?

Источник

Способы возбуждения машин постоянного тока и их классификация

Ток, протекающий в обмотке возбуждения основных полюсов, создает магнитный поток . Электрические машины постоянного тока следует различать по способу возбуждения и схеме включения обмотки возбуждения.

Генераторы постоянного тока могут выполняться с независимым, параллельным, последовательным и смешанным возбуждением. Следует заметить, что теперь применение в качестве источников энергии генераторов постоянного тока очень ограничено.

Обмотка возбуждения генератора постоянного тока с независимым возбуждением получает питание от независимого источника — сети постоянного тока, специального возбудителя , преобразователя и др. (рис. 1, а). Эти генераторы применяются в мощных системах, когда напряжение возбуждения должно быть выбрано отличным от напряжения генератора, в системах регулирования скорости вращения двигателей, которые питаются от генераторов и других источников.

Значение тока возбуждения мощных генераторов составляет 1,0—1,5% от тока генераторов и до десятков процентов для машин мощностью порядка десятков ватт.

Рис. 1. Схемы генераторов постоянного тока: а — с независимым возбуждением; б — с параллельным возбуждением; в — с последовательным возбуждением; г — со смешанным возбуждением П — потребители

У г енератора с параллельным возбуждением обмотка возбуждения включается на напряжение самого генератора (смотрите рис. 1,б). Ток якоря I я равен сумме токов нагрузки I п и тока возбуждения I в: I я = I п + I в

Генераторы выполняются обычно для средних мощностей.

Обмотка возбуждения генератора с последовательным возбуждением включена последовательно в цепь якоря и обтекается током якоря (рис. 1, в). Процесс самовозбуждения генератора протекает очень бурно. Такие генераторы практически не используются. В самом начале развития энергетики применялась система передачи энергии с последовательно включенными генераторами и двигателями последовательного возбуждения.

Генератор со смешанным возбуждением имеет две обмотки возбуждения — параллельную ОВП и последовательную ОВС обычно с согласным включением (рис. 1, г). Параллельная обмотка может быть включена до последовательной («короткий шунт») или после нее («длинный шунт»). МДС последовательной обмотки обычно невелика и рассчитана только на компенсацию падения напряжения в якоре при нагрузке. Такие генераторы теперь также практически не применяются.

Схемы возбуждения двигателей постоянного тока подобны схемам для генераторов. Двигатели постоянного тока большой мощности выполняются обычно с независимым возбуждением . У двигателей параллельного возбуждения обмотка возбуждения получает питание от того же источника энергии, что и двигатель. Обмотка возбуждения включается непосредственно на напряжение источника энергии, чтобы не сказывалось влияние падения напряжения в пусковом сопротивлении (рис. 2).

Рис. 2. Схема двигателя постоянного тока с параллельным возбуждением

Ток сети Ic составляется из тока якоря I я и тока возбуждения I в.

Схема двигателя последовательного возбуждения подобна схеме на рис. 1, в. Благодаря последовательной обмотке вращающий момент при нагрузке возрастает больше, чем у двигателей параллельного возбуждения, при этом скорость вращения уменьшается. Это свойство двигателей определяет их широкое применение в приводах электровозной тяги: в магистральных электровозах, городском транспорте и др. Падение напряжения в обмотке возбуждения при номинальном токе составляет единицы процентов от номинального напряжения.

Двигатели смешанного возбуждения из-за наличия последовательной обмотки в некоторой мере имеют свойства двигателей последовательного возбуждения. В настоящее время они практически не применяются. Двигатели параллельного возбуждения иногда выполняются со стабилизирующей (последовательной) обмоткой, включаемой согласно с параллельной обмоткой возбуждения, для обеспечения более спокойной работы при пиках нагрузки. МДС такой стабилизирующей обмотки невелика — единицы процентов от основной МДС.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Способы возбуждения машин постоянного тока

Работа и свойства электрических машин постоянного тока (как генераторов, так и двигателей) в значительной степени зависят от способа возбуждения в них магнитного потока. Действительно, магнитный поток входит множителем как в выражение ЭДС, так и в выражение электромагнитного момента, поэтому необходимо знать, как создается магнитный поток, от каких величин он зависит, как и для какой цели нужно изменять его значение.
Согласно ГОСТов, по способу возбуждения машины постоянного тока классифицируют следующим образом:
а) машины независимого возбуждения, обмотка возбуждения которых питается от постороннего источника электрического тока;
б) машины параллельного возбуждения, обмотка возбуждения которых соединена параллельно с цепью якоря;
в) машины последовательного возбуждения, обмотка возбуждения которых соединена последовательно с цепью якоря;
г) машины смешанного возбуждения, у которых имеются две обмотки возбуждения, одна из которых соединена последовательно с цепью якоря (другая — может быть либо независимой, либо, чаще, параллельной). Если МДС обмоток возбуждения имеют одно направление, то такое их включение называется согласным. Если же МДС обмоток направлены в разные стороны, то включение называется встречным.
Схемы всех четырех типов машин показаны соответственно на рис. 1.
Все эти электрические машины имеют одинаковое устройство и отличаются лишь выполнением обмотки возбуждения (ОВ). Обмотки независимого и параллельного возбуждения изготавливают с большим числом витков, из провода малого сечения, а обмотку последовательного возбуждения — с малым числом витков из провода большого сечения.
Существуют также машины небольшой мощности, магнитное поле у которых создается либо только постоянными магнитами, либо еще и обмотками возбуждения, питаемыми электрическим током. Свойства первых близки к свойствам машин независимого, а вторых — смешанного или независимого возбуждения (в зависимости от способа подключения обмотки возбуждения).


Рис. 1. Схемы электрических машин постоянного тока независимого (а), параллельного (6), последовательного (в) и смешанного (г)
возбуждений

Во всех машинах на возбуждение расходуется от 0,5 % до 5 % номинальной мощности машины, причем первое значение относится к очень мощным машинам, а второе — к машинам мощностью около 1 кВт.
Как видно из рис. 1, значение тока возбуждения /в машины независимого возбуждения не зависит от тока якоря и определяется напряжением источника питания, причем для регулирования тока /в последовательно в цепь обмотки возбуждения включают резистор.
У машины параллельного возбуждения, согласно закону Ома,
/в = Ur/(RB + Rр), (1)
где RB — сопротивление обмотки возбуждения, a Rp — последовательно с нею включаемого регулировочного резистора.
У машин последовательного возбуждения /в = /я.
Согласно ГОСТ 2582—81, выводы всех обмоток маркируются следующим образом:
Я1 и Я2 — начало и конец обмотки якоря;
С1 и С2 — начало и конец последовательной (сериесной) обмотки возбуждения;
Ш1 и Ш2 — начало и конец параллельной (шунтовой) обмотки возбуждения;
К1 и К2 — начало и конец компенсационной обмотки;
Н1 и Н2 — начало и конец обмотки независимого возбуждения;
Д1 и Д2 — начало и конец обмотки добавочных полюсов.
Возможны случаи, когда машина имеет несколько обмоток одного наименования. В этом случае их начала и концы после буквенных обозначений должны иметь две цифры:
первая указывает порядковый номер обмотки, a вторая,, — начало (1) или конец (2). Например, начало второй параллельной обмотки возбуждения будет иметь обозначение Ш21.

Источник

Возбуждение двигателя постоянного тока. Схемы возбуждения.

Возбуждение двигателя постоянного тока является отличительной особенностью таких двигателей. От типа возбуждения зависят механические характеристики электрических машин постоянного тока. Возбуждение может быть параллельным последовательным смешанным и независимым. Тип возбуждения означает, в какой последовательности включены обмотки якоря и ротора.

При параллельном возбуждении обмотки якоря и ротора включаются параллельно друг другу к одному источнику тока. Так как у обмотки возбуждения больше витков чем у якорной то и ток в ней течет незначительный. В цепи, как обмотки ротора, так и обмотки якоря могут включаться регулировочные сопротивления.

Обмотка возбуждения может подключаться и к отдельному источнику тока. В этом случае возбуждение будет называться независимым. У такого двигателя характеристики будут схожи с двигателем, в котором применяется постоянный магнит. Скорость вращения двигателя с независимым возбуждением, как и у двигателя с параллельным возбуждением зависит от тока якоря и основного магнитного потока. Основной магнитный поток создается обмоткой ротора.

Скорость вращения можно регулировать с помощью реостата включенного в цепь якоря изменяя тем самым ток в нем. Также можно регулировать ток возбуждения, но здесь нужно быть осторожным. Так как при его чрезмерном уменьшении или полном отсутствии в результате обрыва питающего провода ток в якоре может возрасти до опасных значений.

Также при малой нагрузке на валу или в режиме холостого хода скорость вращения может настолько увеличится, что может привести к механическому разрушению двигателя.

Если обмотка возбуждения включена последовательно с якорной, то такое возбуждение называется последовательным. При этом через якорь и обмотку возбуждения протекает один и тот же ток. Таким образом, магнитный поток изменяется с изменением нагрузки двигателя. А следовательно скорость двигателя будет зависеть от нагрузки.

Двигатели с таким возбуждением нельзя запускать на холостом ходу либо с небольшой нагрузкой на вал. Их применяют в том случае если, требуется большой пусковой момент или способность выдерживать кратковременные перегрузки.

При смешанном возбуждении используются двигатели, у которых на каждом полюсе есть по две обмотки. Их можно включить так чтобы магнитные потоки как складывались, так и вычитались.

В зависимости от того как соотносятся магнитные потоки двигатель с таким возбуждением может работать как двигатель с последовательным так и двигатель с параллельным возбуждением. Все зависит от ситуации, если нужен большой стартовый момент, такая машина работает в режиме согласного включения обмоток. Если же необходима постоянная скорость вращения, при динамически изменяющейся нагрузке применяют встречное включение обмоток.

В машинах постоянного тока можно изменять направление движения ротора. Для этого необходимо изменить направление тока в одной из обмоток. Якорной либо возбуждения. Изменением полярности направление вращения двигателя можно добиться только в двигателе с независимым возбуждением, или в котором используется постоянный магнит. В других схемах включения нужно переключать одну из обмоток.

Стартовый ток в машине постоянного тока достаточно велик, поэтому ее следует запускать с добавочным реостатом, чтобы избежать повреждения обмоток.

Источник

Оцените статью
Разные способы