- Числовая последовательность
- п.1. Формулы числовых последовательностей
- п.2. Задание последовательностей описанием
- п.3. Рекуррентные формулы числовых последовательностей
- п.4. Свойства числовых последовательностей
- п.5. Примеры
- Рекуррентные соотношения и уравнения
- Как решать рекуррентные соотношения?
- Метод производящих функций
- Метод характеристических функций
- Решение для последовательности чисел Фибоначчи
- Способ 1. Производящяя функция
- Способ 2. Характеристическое уравнение
- Примеры решений
- Решение рекуррентных соотношений
- Содержание
- Определения [ править ]
- Метод производящих функций [ править ]
- Примеры [ править ]
- [math]1[/math] пример [ править ]
- [math]2[/math] пример: числа Фибоначчи [ править ]
- [math]3[/math] пример [ править ]
- [math]4[/math] пример [ править ]
Числовая последовательность
п.1. Формулы числовых последовательностей
Запишем несколько первых чётных чисел и пронумеруем их:
Этот ряд бесконечен, но, глядя на таблицу, его легко задать формулой: \begin
Теперь, пользуясь формулой, для любого порядкового номера n мы сможем найти соответствующее чётное число.
Для обозначения членов последовательности и их индексов можно использовать разные буквы: x1, x2, . xm. ; a1, a2, . ak. ; A1, A2, . As. и т.д.
Например:
Найти 1й, 3й и 4й члены последовательности, заданной формулой \(\mathrm
п.2. Задание последовательностей описанием
Последовательность, заданную формулой yn=2n, можно задать описанием как «последовательность чётных чисел».
Последовательность, заданную формулой \(\mathrm
Кроме того, существуют такие последовательности, которые можно задать только описанием.
Например:
1. Последовательность простых чисел:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, …
2. Последовательность десятичных приближений числа \(\mathrm<\sqrt<3>>\) по недостатку:
1; 1,7; 1,73; 1,732; 1,7320; 1,73205; 1,7302050; 1,73020508,…
п.3. Рекуррентные формулы числовых последовательностей
Важнейшим классом числовых последовательностей, которые широко используются в алгоритмах вычислительной математики, являются рекуррентные отношения (от латинского слова recurrere – возвращаться).
Например:
Найти y5, если y1 = 1, yn = 2yn-1 + 1
Проводим последовательные вычисления:
y2 = 2y1 + 1 = 3, y3 = 2y2 + 1 = 7, y4 = 2y3 + 1 = 15, y5 = 2y4 + 1 = 31
Интересно, что, если присмотреться, эту последовательность можно также задать аналитически: yn = 2 n – 1.
п.4. Свойства числовых последовательностей
Например:
Последовательность квадратов натуральных чисел yn = n 2 возрастающая:
Например:
Последовательность дробей с индексом в знаменателе \(\mathrm
Например:
Последовательность отрицательных дробей с индексом в знаменателе \(\mathrm
Например:
Последовательность дробей с индексом в знаменателе \(\mathrm
Например:
Последовательность дробей с индексом в знаменателе \(\mathrm
п.5. Примеры
Пример 1. Найдите первые 4 члена последовательности, заданной формулой
a) \(\mathrm
Пример 2. Найдите первые 4 члена последовательности, заданной рекуррентной формулой
a) y1 = 3, yn = 3yn – 1
Пример 3*. Укажите какую-либо формулу для n-го члена числовой последовательности
а) 3, 5, 7, 9, .
Это – последовательность нечётных чисел, для которой:
yn = 2n + 1
б) 5, -5, 5, -5.
Это – знакопеременная последовательность, для которой модуль всегда равен 5, а знак меняется. Изменение знака можно записать как степень (–1). Учитывая, что нечётные члены последовательности положительные, а чётные – отрицательные, получаем:
yn = (–1) n+1 · 5
в) \(\mathrm<\frac<1><1\cdot 2>,\ \ \frac<1><2\cdot 3>,\ \ \frac<1><3\cdot 4>. >\)
Это – последовательность дробей, у которых в знаменателе произведение текущего индекса n на следующий индекс (n + 1):
\(\mathrm
г) 2, 5, 10, 17, 26, 37, .
Заметим, что
5 — 2 = 3, 10 — 5 = 5, 17 — 10 = 7, 26 — 17 = 9, .
Каждый последующий член отличается от предыдущего на возрастающее нечётное число. Можем записать рекуррентную формулу:
y1 = 2, yn = yn-1 + (2n –1)
Пример 4*. Пифагор изучал последовательность «треугольных» чисел, которые можно задать следующими геометрическими фигурами:
и т.д.
Задайте эту последовательность 1) рекуррентной формулой; 2) аналитической формулой.
1) Запишем последовательность в явном виде, как это следует из чертежа: $$ \mathrm< y_1=1,\ \ y_2=\underbrace<1>_
2) Для произвольного члена последовательности:
yn = 1 + 2 + 3 + . + (n — 2) + (n — 1) + n
Найдём эту сумму. Для этого запишем выражение наоборот:
yn = n + (n — 1) + (n — 2) + . + 3 + 2 + 1
Источник
Рекуррентные соотношения и уравнения
В этом разделе вы найдете бесплатные примеры решений рекуррентных соотношений методом характеристического уравнения и подбора частного решения по правой части. Также приведены краткие алгоритмы решения для двух методов и пример их использования для последовательности Фибоначчи.
Как решать рекуррентные соотношения?
Для решения рекуррентных соотношений применяют один из двух основных способов:
- Метод производящих функций
- Метод характеристического уравнения
В следующем разделе мы сравним, как выглядит процесс решения для одной и той же последовательности двумя методами.
Метод производящих функций
- Записать рекуррентное соотношение и начальные данные для него в следующем виде (если порядок соотношения равен $k$) $$a_ <0>= …, \\ a_ <1>= …, \\ a_
= …, \\ … \\ a_ = …, n\geqslant k$$ - Домножить каждую строчку на $z$ в соответствующей степени $z^
\cdot a_ $ и сложить все выражения для $n \ge 0$. В левой части получится сумма $\displaystyle\sum_ ^ <\infty>a_nz^n$ — это производящая функция, назовем ее $G(z)$. Правую часть преобразовать так, чтобы она превратилась в выражение, включающее $G(z)$. - Решить полученное уравнение относительно $G(z)$.
- Разложить $G(z)$ в степенной ряд, тогда коэффициент при $z_n$ будет искомым выражением для $a_n$.
Метод характеристических функций
Этот метод практически полностью аналогичен методу решения линейных неоднородных дифференциальных уравнений с постоянными коэффициентами, кратко алгоритм выглядит так:
- Записать соответствующее однородное рекуррентное уравнение (РУ): $$ p_
a_ + p_ a_ + . + p_n a_n =f \to \\ \to p_ a_ + p_ a_ + . + p_n a_n =0. $$ - Выписать для него характеристическое уравнение и найти его корни $\lambda_i$ $$ p_
\lambda^ + p_ \lambda^ + . + p_ \lambda + p_n =0. $$ - Выписать согласно полученным корням $\lambda_1, . \lambda_k$ общее решение однородного рекуррентного соотношения (подробнее теорию см. по ссылке [1] ниже). $$ C_1 \lambda_1^n +. +C_k \lambda_k^n \, \mbox < для случая различных простых корней>, $$ $$ C_1 \lambda_1^n + C_2 n\lambda_1^n +. +C_m n^m \lambda_1^n+. +C_k \lambda_k^n \mbox < для случая корня >\, \lambda_1 \, < кратности >\, m. $$
- Подобрать частное решение неоднородного рекуррентного соотношения по виду правой части (особенно удобно для правых частей вида $\mu^n*P(n)$, $P(n)$ — многочлен от $n$).
- Представить общее решение неоднородного РУ как сумму общего решения соответствующего однородного РУ и частного решения неоднородного РУ.
- Подставить начальные условия $a_0, a_1, . a_
$ и получить значения констант $C_1, . C_k$.
Решение для последовательности чисел Фибоначчи
Последовательность чисел Фибоначи — это последовательность, каждый элемент которой (кроме нулевого и первого) равен сумме двух предыдущих:
$$ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 , . $$
Числа Фибоначчи растут быстро: $f_<10>=55$, $f_<20>=6765$, а $f_<100>=354224848179261915075$.
Общая формула данной рекуррентной последовательности имеет вид6
Способ 1. Производящяя функция
Начинаем с второго шага алгоритма, домножаем на $z^n$:
$$\begin
Складываем все строчки:
На третьем шаге алгоритма приводим все суммы к замкнутому виду:
откуда выводим искомое выражение для производящей функции:
Теперь разложим ее в степенной ряд. Для этого сначала разложим знаменатель на множители. Найдем корни уравнения:
Чтобы разложить данные дроби в ряды, используем известное разложение для дроби:
Рассмотрим первую дробь и поделим в ней числитель и знаменатель на $z_1$:
Аналогично (но с делением на $z_2$) действуем со второй дробью:
Преобразуем данное выражение, используя то, что
$$1/z_1=-z_2, \quad 1/z_2 = -z_1, \quad z_1-z_2=\sqrt <5>$$ $$f_n=\frac<1><\sqrt<5>>\left( \biggl( \frac<1+\sqrt<5>> <2>\biggr)^n — \biggl( \frac<1-\sqrt<5>> <2>\biggr)^n \right). $$
Способ 2. Характеристическое уравнение
Запишем характеристический многочлен для $f_n=f_
Тогда общее решение однородного рекуррентного уравнения имеет вид:
Осталось найти значения произвольных постоянных $C_1, C_2$ из начальных условий $f_0=0, f_1=1$.
Решая систему, найдем
Итоговое выражение для последовательности чисел Фибоначчи:
Результаты обоих методов совпали, решение вторым методом оказалось проще и короче.
Примеры решений
Задача 1. Решить рекуррентное соотношение $f(n+2)=-6f(n+1)+7f(n)+n-3$ с начальными условиями $f(0)=2$ и $f(1)=4$, сделать проверку
Задача 2. Решить рекуррентное соотношение $f(n+2)=-2f(n+1)+3f(n)-3^n$ с начальными условиями $f(0)=1$, $f(1)=3$ и сделать проверку
Задача 3. 1. Решить рекуррентное соотношение $f(n+2) =-5f(n+1) -4f(n) + 3n^2$ с начальными условиями $f(0) = 2$, $f(1) = 3$.
2. Проверить, удовлетворяет ли найденное решение начальным условиям и обращает ли оно рекуррентное соотношение в справедливое тождество.
Задача 4. Найти последовательность $
Источник
Решение рекуррентных соотношений
Содержание
Определения [ править ]
Определение: |
Рекуррентная формула (англ. recurrence relation) — формула вида [math]a_n=f(n, a_ |
Для рекуррентного соотношения, которому удовлетворяет последовательность [math] \ < a_n \>[/math] мы часто хотим получить выражение для [math]a_n[/math] . Например, для рекуррентного соотношения, задающего числа Фибоначчи:
[math] F_0 = 0,\qquad F_1 = 1,\qquad F_
[math]a_n[/math] член может быть записан следующим образом: [math]a_n=\dfrac<1><\sqrt<5>>\left( \biggl( \dfrac<1+\sqrt<5>> <2>\biggr)^n — \biggl( \dfrac<1-\sqrt<5>> <2>\biggr)^n \right).[/math]
Для этого можно использовать метод производящих функций (англ. generating function method).
Метод производящих функций [ править ]
Алгоритм получения выражения для чисел [math]a_
- Записать рекуррентное соотношение и начальные данные для него в следующем виде (если порядок соотношения равен [math]k[/math] ): [math]a_ <0>= …, \\ a_ <1>= …, \\ a_
= …, \\ … \\ a_ = …, n\geqslant k[/math] - Домножить каждую строчку на [math]z[/math] в соответствующей степени ( [math]z^
\cdot a_ = … \cdot z^ [/math] ) и сложить все выражения, многоточие надо рассматривать как множество из выражений, где [math]n \in [k, +\infty)[/math] . В левой части получится сумма [math]\displaystyle\sum_ ^ <\infty>a_nz^n[/math] — это производящая функция, назовем ее [math]G(z)[/math] . Правую часть преобразовать так, чтобы она превратилась в выражение, включающее [math]G(z)[/math] . - Решить полученное уравнение, получив для [math]G(z)[/math] выражение в замкнутом виде.
- Разложить [math]G(z)[/math] в степенной ряд, коэффициент при [math]z_n[/math] будет искомым выражением для [math]a_n[/math] .
Примеры [ править ]
[math]1[/math] пример [ править ]
Производящие функции позволяют решать рекуррентные соотношение механически по одному и тому же алгоритму. Рассмотрим общую схему на простом примере, который позволит продемонстрировать базовые приёмы работы.
Задано линейное однородное рекуррентное соотношение порядка [math]2[/math] с постоянными коэффициентами:
[math]\begin
Порядок соотношения — это его «глубина», то есть количество предшествующих элементов, требуемых для вычисления элемента с номером [math]n[/math] . В данном случае порядок равен [math]2[/math] , так как для вычисления [math]a_n[/math] требуется знать [math]a_
Будем искать производящую функцию последовательности в виде
[math] G(z)=\displaystyle\sum_
с этой целью умножим верхнюю строчку в записи рекуррентного соотношения на [math]z^0[/math] , следующую — на [math]z^1[/math] и последнюю — на [math]z^n[/math] :
[math]\begin
Теперь сложим все уравнения для всех значений [math]n[/math] :
[math] \underbrace
Левая часть уравнения в точности равна [math]G(z)[/math] , а в правой части есть суммы, очень похожие на функцию [math]G(z)[/math] , но не равные ей. Эти суммы нужно привести к виду [math]G(z)[/math] . Начнём с первой:
[math] \displaystyle\sum_
Равенство [math](1)[/math] получатся вынесением [math]z[/math] в первой степени за знак суммы, это необходимо, чтобы уровнять степень переменной [math]z[/math] и индекс переменной a внутри суммы. Действие [math](2)[/math] — изменение индекса суммирования, которое позволяет избавиться от [math]n-1[/math] . Равенство [math](3)[/math] получается, если прибавить и снова отнять значение [math]a_0[/math] , чтобы получить полную сумму от [math]n=0[/math] до [math]∞[/math] . Равенство [math](4)[/math] справедливо в силу того, что [math]a_0=0[/math] .
Аналогичные манипуляции со второй суммой дают нам выражение
[math] \displaystyle\sum_
Теперь наше исходное уравнение для производящей функции принимает вид:
[math] G(z) = z + 5zG(z) -6z^2G(z), [/math]
откуда получаем производящую функцию последовательности в замкнутом виде:
[math] G(z) = \dfrac
Отыскав производящую функцию в замкнутом виде, её нужно снова разложить в ряд. Это можно сделать разными способами, но самый простой из них — разбить всю дробь на простые дроби и применить формулу для разложения [math]\dfrac<1><1-z>[/math] . Итак, разложим знаменатель функции на множители:
[math] G(z) = \dfrac
Теперь разобьём дробь на сумму простых дробей:
[math] \dfrac
Из этого разложения следует, что
[math] \dfrac<1><1-3z>= \displaystyle\sum_
Таким образом,
[math] G(z) = \displaystyle\sum_
С другой стороны, мы искали [math]G(z)[/math] в виде
[math] G(z)=\displaystyle\sum_
поэтому, в силу равенства рядов, [math]a_n=3^n-2^n[/math] (для [math]n\geqslant 0[/math] ).
[math]2[/math] пример: числа Фибоначчи [ править ]
Рассмотрим рекуррентное соотношение для чисел Фибоначчи:
[math]\begin
Первый шаг алгоритма мы уже выполнили, записав рекуррентное соотношение. Выполним второй шаг:
[math]\begin
Складываем все строчки:
[math] f_0 + f_1 z + \displaystyle\sum_
Третий шаг алгоритма требует привести все суммы к замкнутому виду:
[math]\begin
откуда получаем замкнутое выражение для производящей функции:
[math] G(z) = \dfrac
Осталось разложить её в ряд (чего требует четвёртый шаг алгоритма). С этой целью нужно разложить знаменатель на множители. Найдем корни уравнения:
[math]\displaylines< 1-z-z^2 = 0 \cr z_1=-\dfrac<1-\sqrt<5>><2>, z_2=-\dfrac<1+\sqrt<5>><2>. > [/math]
Нам известно разложение следующей рациональной функции:
[math] \dfrac<1> <1-z>= \displaystyle\sum_
Рассмотрим первую дробь и поделим в ней числитель и знаменатель на [math]z_1[/math] :
[math] \dfrac
Аналогично (но с делением на [math]z_2[/math] ) поступим со второй дробью:
[math] \dfrac
Данное выражение можно упростить, если обратить внимание на то, что [math]1/z_1=-z_2[/math] , [math]1/z_2=-z_1[/math] и [math]z_1-z_2=√5[/math] . Подставим [math]z_1[/math] и [math]z_2[/math] в предыдущее выражение:
[math] f_n=\dfrac<1><\sqrt<5>>\left( \biggl( \dfrac<1+\sqrt<5>> <2>\biggr)^n — \biggl( \dfrac<1-\sqrt<5>> <2>\biggr)^n \right). [/math]
[math]3[/math] пример [ править ]
Найдём производящую функцию для последовательности квадратов чисел Фибоначчи: $1, 1, 4, 9, 25, \ldots, f_k^2,\ldots$.
По определению последовательности Фибоначчи выполняется:
[math] \left\< \begin
Возведя в квадрат и сложив, получим:
[math] \begin
Обозначим рассматриваемую последовательность [math]A[/math] , а её члены [math]a_n[/math] , тогда:
[math]a_n = 2a_
Рекуррентное соотношение:
[math] \begin
Приведём суммы к замкнутому виду:
[math] \begin
откуда получаем замкнутое выражение для производящей функции:
[math]G(z) = \dfrac<1 - z><1 - 2z 2z^2 + z^3>.[/math]
[math]4[/math] пример [ править ]
Рассмотрим следующее рекуррентное соотношение:
[math]\begin
Следующие действия аналогичны тем, которые мы делали для чисел Фибоначчи:
[math]\begin
Вспомним, что
[math] (z^n)’ = nz^
поэтому
[math] \displaystyle\sum_
Последняя сумма может быть свёрнута:
[math] \displaystyle\sum_
Подставив свёрнутое выражение обратно, имеем,
[math] z\biggl(\displaystyle\sum_
Таким образом, наше последнее уравнение примет вид
[math] G(z) = 1 -4z + 6zG(z)-8z^2G(z) + \dfrac
Это уравнение для производящей функции. Из него выражаем [math]G(z)[/math] :
[math] G(z) = \dfrac<1-6z+11z^2-5z^3><(1-6z+8z^2)(1-z)^2>. [/math]
Дальше мы знаем что делать со всеми этими дробями, кроме, разве лишь, первой. Рассмотрим её (без множителя) подробнее:
[math] \dfrac<1> <(1-z)^2>=(1-z)^ <-2>=\displaystyle\sum_
Источник