Понятие соответствия способ задания соответствия

Понятие соответствия между элементами двух множеств. Способы задания соответствий. Соответствие обратное данному. Взаимно однозначные соответствия. Равномощные множества

Соответствие между элементами мн-в А и В называют любое под множ-во их декартово произведения.

Способы задания соответствия

1 – указаниям характеристик св-ва по кот. Эти пары составл.

2- перечисление этих пар.

Пример: если мн-ва

3)С помощью графа.

4)С помощью таблицы

X/Y
(1,1) (1,3) (1,5) (1,7)
(2,1) (2,3) (2,5) (2,7)
(3,1) (3,3) (3,5) (3,7)

Определение:

Между элементами назыв обратно данному если yS (В минус 1 степени) xó xSy

S(В минус первой степени) входит B x А.

Чтобы постр графического обратного соответствия надо поменять направления стрелок.

Чтобы задать соответствие обратное данному в перечисление пар надо поменять местами компоненты пар. Графики взаимно обратных соответствий семетричны. Относительно прямой координатных углов.

Определение:

Взаимно однозначном соответствием между элементам мн-в А и В назыв. такое соответствие при которым каждому элементу. Из мн-в А соответствует единст элемент.

Из мн-ва В и каждый элемент из мн-ва В является соответсвующим только для одного элемента из мн-ва А.

Пример: Мн-во первых 24 натур чисел, мн-во студен в группе.

Мн-во А и В назыв равномощным если между их элементами можно установить взаимно однозначно А

2. Обучающимся начальных классов предложено задание:

1 2 3 4 5 6 7 8

• При изучении какой темы курса математики начальных классов можно предложить это задание?

• С какой целью и на каком этапе?

• Соответствие между какими множествами здесь задается? Являются ли эти множества равномощными?

• Опишите методику введения знаков ”>“ и “

Источник

§8. Понятие соответствия между множествами. Способы задания соответствий

Пусть заданы два множества X и Y. Если для каждого элемента х Î Х указан элемент y Î Y, с которым сопоставляется х, то говорят, что между множествами X и Y установлено соответствие.

Иначе говоря, соответствием между элементами множеств X и Y называется любое подмножество G декартова произведения X ´ Y этих множеств. Если (х, у) Î G, то множество первых компонентов (D(G)) называется областью определения соответствия G, множество вторых компонентов (E(G)) –– областью значений этого соответствия.

Множество всех y Î Y, которые сопоставляются элементу х Î Х, называется образом х в Y. Множество же всех х Î Х, которым сопоставляют элемент y Î Y, называется прообразом y в Х.

Способы задания соответствия. Поскольку соответствие — это множество, то его можно задать теми же способами, что и любое множество: перечислением всех пар (х, у), где элементы х Î Х и y Î Y связаны данным соответствием; указанием характеристического свойства всех пар (х, у) элементов х Î Х, y Î Y, находящихся в рассматриваемом соответствии.

Когда множества X и Y конечные, то соответствие между элементами можно задать таблицей, где в левом столбце записывают элементы множества Х, а в верхней строке — элементы множества Y. Пары элементов, находящихся в соответствии G, будут находиться на пересечении соответствующих столбцов и строк.

Читайте также:  Определение нагрузки урока физической культуры способом пульсометрия

Соответствие между двумя конечными множествами можно показать и при помощи графа. Множества X и Y показывают оваломи, элементы множеств X и Y обозначают точками, а стрелками соединяют соответствующие элементы так, что если имеет место (х, у) Î G, то стрелку проводят из точки х в точку у.

Когда множества Х и Y числовые, то можно построить график соответствия G на координатной плоскости.

Пример, график соответствия «меньше» между элементами множеств Х = <1, 3, 4, 6>и Y = <2, 5, 7>. Выпишем пары элементов, находящихся в данном соответствии: (1, 2), (1, 5), (1, 7), (3, 5), (3, 7), (4, 5), (4, 7), (6, 7). Если изобразить элементы множества Х на оси Ох, а элементы множества Y на оси Оу, а выписанные пары отметить точками на координатной плоскости, то получим график рассматриваемого соответствия между элементами множеств X и Y (рис. 13).

Источник

Граф и график соответствия. Соответствие, обратное данному. Виды соответствий

Понятие соответствия. Способы задания соответствий

СООТВЕТСТВИЯ МЕЖДУ ДВУМЯ МНОЖЕСТВАМИ

Лекция 16. Соответствия

1. Понятие соответствия. Способы задания соответствий.

2. Граф и график соответствия. Соответствие, обратное данному. Виды соответствий.

3. Взаимно-однозначные соответствия

Первоначально алгеброй называли учение о решении уравнений. За много столетий своего развития алгебра превратилась в науку, которая изучает операции и отношения на различных множествах. Поэтому не случайно уже в начальной школе дети знакомятся с таки­ми алгебраическими понятиями, как выражение (числовое и с пере­менными), числовое равенство, числовое неравенство, уравнение. Они изучают различные свойства арифметических действий над числами, которые позволяют рационально выполнять вычисления. И конечно, в начальном курсе математики происходит их знакомство с различ­ными зависимостями, отношениями, но чтобы использовать их в це­лях развития мыслительной деятельности детей, учитель должен овла­деть некоторыми общими понятиями современной алгебры — поняти­ем соответствия, отношения, алгебраической операции и др. Кроме того, усваивая математический язык, используемый в алгебре, учитель сможет глубже понять сущность математического моделирования реальных явлений и процессов.

Изучая окружающий нас мир, математика рассматривает не только его объекты, но и главным образом связи между ними. Эти связи называют зависимостями, соответствиями, отношениями, функциями. Например, при вычислении длин предметов устанавливаются соответствия между предметами и числами, которые являются значениями их длин; при решении задач на движение устанавливается зависимость между пройденным расстоянием и временем, если скорость движения постоянна.

Конкретные зависимости, соответствия, отношения между объектами в математике изучались с момента ее возникновения. Но вопрос о том, что общее имеют самые разные соответствия, какова сущность любого соответствия, был поставлен в конце XIX — начале XX века, и ответ на него был найден в рамках теории множеств.

В начальном курсе математики изучаются различные взаимосвязи между элементами одного, двух и более множеств. Поэтому учителю надо понимать их суть, что поможет ему обеспечить единство в методике изучения этих взаимосвязей.

Рассмотрим три примера соответствий, изучаемых в начальном курсе математики.

Читайте также:  Решение задач линейного способа начисления амортизации

Рис.66

I. Найти значение выражения: II.Найти площадь фигуры III. Решить уравнение:
в1) (17-1):4; в2) (12 + 18) : (6-6); в3) 2·7 + 6. y1) 2 + x = 6; y2) x – 7 = 4; y3) 2x = 8

В первом случае мы устанавливаем соответствие между заданными выражениями и их числовыми значениями. Во втором выясняем, какое число соответствует каждой из данных фигур, характеризуя ее площадь. В третьем ищем число, которое является решением уравнения.

Что общее имеют эти соответствия?

Видим, что во всех случаях мы имеем два множества: в первом -это множество из трех числовых выражений и множество N натуральных чисел (ему принадлежат значения данных выражений); во втором -это множество из трех геометрических фигур и множество N натуральных чисел; в третьем — это множество из трех уравнений и множество N натуральных чисел.

Выполняя предложенные задания, мы устанавливаем связь (соответствие) между этими множествами. Ее можно представить наглядно, при помощи графов (рис. 67).

Можно задать эти соответствия, перечислив все пары элементов, плодящихся в заданном соответствии:

Рис. 67

Полученные множества показывают, что любое соответствие меж­ду двумя множествами X и Y можно рассматривать как множество упорядоченных пар, образованных из их элементов. А так как упоря­доченные пары — это элементы декартова произведения, то приходим к следующему определению общего понятия соответствия.

Определение.Соответствием между множествами X и Y назы­вается всякое подмножество декартова произведения этих мно­жеств.

Соответствия принято обозначать буквами Р, S, Т, К и др. Если S -соответствие между элементами множеств X и Y то, согласно опреде­лению, S с Х х У.

Выясним теперь, как задают соответствия между двумя множест­вами. Поскольку соответствие — это подмножество, то его можно за­давать как любое множество, т.е. либо перечислив все пары элементов, находящихся в заданном соответствии, либо указав характеристиче­ское свойство элементов этого подмножества. Так, соответствие меж­ду множествами X — <1, 2, 4, 6>и У = <3, 5>можно задать:

1) при помощи предложения с двумя переменными: а -1 , то S -1 = <(2,4), (3,5), (6,8)>.

Рис.70

Условимся предложение «элемент х находится в соответствии S с элементом у» записывать кратко так: хSу. Запись хSу можно рас­сматривать как обобщение записей конкретных соответствий: x= 2у; х > 3у+1 и др.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Тема 3. Понятие соответствия Содержание

Понятие соответствия между множествами.

Способы задания соответствий.

Соответствие обратное данному.

Взаимно однозначное соответствие.

Равномощные множества. Счетные множества.

Основная литература 7, 10, 11, 16, 23, 33, 34;

Дополнительная литература 1, 10, 14, 74

1. Понятие соответствия между множествами

В начальном курсе математики изучаются различные взаимосвязи между элементами одного, двух и более множеств. Поэтому учителю надо понимать их суть, что поможет ему обеспечить единство в методике этих взаимосвязей.

Рассмотрим примеры соответствий, изучаемых в начальном курсе математики.

Пример 1. а) (17 – 1) : 4; б) (12 + 18) : (6-6); в) 27 + 6. Пример 2. 1) 2+х =6; 2) х-7=4; 3) 2х=8.

В первом примере мы установили соответствие между заданными выражениями и их числовыми значениями. Во втором выяснили, какое число является решением уравнения.

Все эти соответствия имеют общее – во обоих случаях мы имеем два множества: в первом – это множество из трех числовых выражений и множество N натуральных чисел (ему принадлежат значения данных выражений); во втором – это множество из трех уравнений и множество N натуральных чисел.

Связь (соответствие) между этими множества можно представить наглядно, при помощи графов.

N 1 N 2

Полученные множества показывают, что любое соответствие между двумя множествами Х и У можно рассматривать как множество упорядоченных пар, образованных из их элементов. А так как упорядоченные пары – это элементы декартова произведения, то приходим к следующему определению общего понятия соответствия.

Определение. Соответствием между множествами Х и У называется всякое подмножество декартова произведения этих множеств. Соответствия принято обозначать буквами R, P, F, T и др.

2. Способы задания соответствий

Поскольку соответствие – это подмножество, то его можно задать как любое множество, т.е. либо перечислив все пары элементов, находящихся в заданном соответствии, либо указав характеристическое свойство элементов этого подмножества.

Пример. Соответствие между множествами Х = 1, 2, 4, 6 и У = 3, 5 можно задать: 1) при помощи предложения с двумя переменными: а  в при условии, что а  Х, в  У; 2) перечислив пары чисел, принадлежащих подмножеству декартова произведения ХУ: (1,3),(1,5),(2,3),(2,5),(4,5). К этому способу задания относят также задание соответствия при помощи графа и графика.

у

Х У

3. Соответствие обратное данному

Пример. Пусть S – соответствие «больше на 2» между множествами Х = 4, 5, 8, 10 и У = 2, 3, 6. Тогда S = (4,2), (5,3), (8,6) и его граф будет как на рисунке.

Соответствие обратное данному, — это соответствие «меньше на 2». Оно рассматривается между множествами У и Х, и чтобы его представить наглядно, достаточно на графе соответствия S направление стрелок поменять на противоположное (См. рисунок).

Условимся предложение «элемент х находится в соответствии S с элементом у» записывать кратко так: х S у.

Определение. Пусть S – соответствие между множествами Х и У. Соответствие S -1 между множествами У и Х называется обратным данному, если у S -1 х тогда и только тогда, когда х S у. Соответствия S и S -1 называют взаимно обратными.

Выясним особенности их графиков. Построим график соответствия S = (4,2), (5,3), (8,6)

у

у

При построении графика соответствия S -1 = (2,4), (3,5), (6,8) мы должны первую компоненту выбирать из множества У = 2,3,6, а вторую – из множества Х = 4, 5, 8, 10. В результате график соответствия S -1 совпадет с графиком соответствия S. Чтобы различать графики соответствий S и S -1 , условились первую компоненту пары соответствия S -1 считать абсциссой, а вторую – ординатой. Например, если (5,3)  S, то (3,5)  S -1 . Точки с координатами (5,3) и (3,5), а в общем случае (х,у) и (у,х) симметричны относительно биссектрисы 1-го и 3-го координатных углов. Следовательно, графики взаимно обратных соответствий S и S -1 симметричны относительно биссектрисы 1-го и 3-го координатных углов.

Чтобы построить график соответствия S -1 , достаточно изобразить на координатной плоскости точки, симметричные точкам графика S относительно биссектрисы 1-го и 3-го координатных углов.

Источник

Читайте также:  Великолепный каким способом образовано
Оцените статью
Разные способы