- Понятие сложной системы способы описания систем
- Введение
- 1. Системность как всеобщее свойство матери
- 1.1. Определе ние системы .
- 1.2.Сложная и большая система
- Философия 2008
- Page tags
- Add a new page
- Основные понятия кибернетики
- Классификации систем
- Система vs. Множество
- Понятие обратной связи
- Сложность
- Сложность в кибернетике
- Сложная система
- Типичные примеры сложных систем в области организации производства и технологии, автоматизированного управления, вычислительной техники, городского хозяйства и др. Способы построения математических моделей сложных систем и методы их исследования.
- Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
- Сложная система
- 1. Типичные примеры сложных систем
- 2. Методы исследования сложных систем
- Литература
Понятие сложной системы способы описания систем
Раздел 1 (краткое содержание).
Введение
Формирование системного анализа в качестве самостоятельного исследовательского направления обусловлено общей тенденций развития человечества, которая сложилась к настоящему времени. Эта тенденция проявляется: во все более глубоком рациональном вмешательстве в организационную деятельность человека, а также в процессы выработки и принятия им решений.
В 70гг ХХ столетия в научной литературе появилась масса терминов: “системная революция”, “системный подход”, “общая теория систем”, “системный анализ операций” и т.д. Это говорило об объединении усилий специалистов различных профессий для решения общих задач, связанных с изучением, проектированием и управлением сложными системами. Причем, начиная с этого времени понятие системности стало не только теоретической категорией, но осознанной необходимостью в практической деятельности. Именно это “системное движение” [16], привело к интеграции отдельных научных направлений по созданию науки, получившей название “системный анализ”, которая в настоящее время выступает как самостоятельная дисциплина.
Предметом изучения системного анализа является система, независимо от ее природы, организации, способа существования и способа описания.
Целью рассмотрения системы является решение задач анализа, управления и проектирования.
В ходе рассмотрения реальной системы приходится сталкиваться с совокупностью проблем, решение которых могут быть под силу только коллективу профессионалов различного профиля. К таким проблемам относятся проблемы начиная с выделения системы из среды, ее формального описания, взаимодействия с внешней средой, выбора или разработки оптимального алгоритма управления, оптимального проектирования, технических средств управления и т.п., кончая подбором кадров и организацией коллектива по решению этих работ. Для решения названных проблем системный анализ привлекает широкий спектр различных наук и различные сферы практической деятельности. При этом он придает большое значение методическим аспектам любого системного исследования [1, 4,11, 15, 16].
Данный курс лекций посвящен решению локальной задачи системного анализа – вопросам методологии системных исследований и математическим методам этих исследований.
1. Системность как всеобщее свойство матери
1.1. Определе ние системы .
Центральным понятием системного анализа является понятие “система” .
- система есть совокупность элементов (подсистем). При определенных условиях элементы сами могут рассматриваться как системы, а исследуемая система – как элемент более сложной системы:
- связи между элементами в системе превосходят по силе связи этих элементов с элементами, не входящими в систему. Это свойство позволяет выделить систему из среды;
- для любой системы характерно существование интегративных качеств (свойство эмерджентности), которые присущи системе в целом, но не свойственны ни одному ее элементу в отдельности: систему нельзя сводить к простой совокупности элементов;
- система всегда имеет цели, для которых она функционирует и существует.
1.2.Сложная и большая система
Одной из характерных тенденций развития общества в настоящее время является появление больших чрезвычайно сложных систем (крупные автоматизированные, технологические, энергетические, гидротехнические, информационные и другие комплексы). С другой стороны стремление познать мир обитания человечества как сложную многофункциональную систему стало реальностью сегодняшнего дня. Все это привело к необходимости определить понятие сложной системы, разработать методические принципы ее исследования, управления и проектирования.
В настоящее время однозначного, четкого определения сложной системы нет. Известны различные подходы и предложены различные формальные признаки ее определения. Так, советский ученый Г.Н. Поворов предлагает относить к сложным системы имеющие 10 4 -10 7 элементов; к ультросложным — системы, состоящие из 10 7 -10 30 элементов; и к суперсистемам – системы из 10 30 -10 200 элементов.
Такой подход имеет тот недостаток, что данное определение сложности является относительным, а не абсолютным.
Английский кибернетик С. Бир предлагает к сложным относить системы, описываемые на языке теоретико-вероятностных методов (мозг, экономика, форма и т.п.) [3].
Наиболее четким на наш взгляд, определением сложных систем является определение, данное, например, в [9].
Сложной системой называется система, в модели которой недостаточно информации для эффективного управления этой системой.
Таким образом, признаком простоты системы является достаточность информации для ее управления. Если же результат управления, полученный с помощью модели, будет неожиданным, то такую систему относят к сложной.
Для перевода системы в разряд простой необходимо получение недостающей информации о ней и включение ее в модель.
От сложных систем необходимо отличать большие системы .
Система, для актуализации модели которой в целях управления недостает материальных ресурсов (машинного времени, емкости памяти, других материальных средств моделирования) называется большой [9].
К таким системам относятся экономические, организационно-управленческие, нейрофизиологические, биологические и т.п. системы.
Способом перевода больших систем в простые является создание новых более мощных средств вычислительной техники.
Как видно из определений, понятия большой и сложной системы являются разными. Однако в литературе эти понятия определены не однозначно.
Некоторые авторы вообще не используют этих понятий, другие используют их как синонимы, а некоторые считают разницу между ними чисто количественной.
Чтобы еще раз подчеркнуть существенную разницу между понятиями “большая” и “сложная” системы приведем примеры из работы [9 ]. При этом сведем их в следующую таблицу:
Источник
Философия 2008
Page tags
It seems you have no tags attached to pages. To attach a tag simply click on the tags button at the bottom of any page.
Add a new page
Основные понятия кибернетики
Основным объектом исследования в Кибернетике являются так называемые кибернетические системы. Они рассматриваются абстрактно, безотносительно к их реальной физической природе, что позволяет находить общие методы подхода к изучению систем качественно различной природы, например технических, биологических и даже социальных.
Основные понятия кибернетики:
- система — любой комплекс динамически связных элементов
- управление — такое преобразование поступающей в систему информации и формирование таких управляющих воздействий, при которых обеспечивается достижение (по возможности наилучшее) заданных целей управления
- обратная связь — обратное воздействие результатов процесса на его протекание или управляемого процесса на управляющий. Передача информации о протекании процесса, на основе которой вырабатывается то или иное управляющее воздействие
- модель и алгоритм
- черный ящик — термин, используемый в кибернетике для обозначения системы, механизм работы которой очень сложен или неизвестен. Такие системы обычно имеют некий «вход» для ввода информации и «выход» для отображения результатов работы. Закономерности работы и устройство «черных ящиков» выявляют, изучая по выходным данным реакцию системы на различные входные данные.
Абстрактная кибернетическая система представляет собой множество взаимосвязанных объектов, называемых элементами системы, способных воспринимать, запоминать и перерабатывать информацию, а также обмениваться информацией. Примерами кибернетических систем могут служить разного рода автоматические регуляторы в технике (например, автопилот или регулятор, обеспечивающий поддержание постоянной температуры в помещении).
Организация связей между элементами кибернетической системы носит название структуры этой системы. Различают системы с
- постоянной структурой,
- переменной структурой.
Изменения структуры задаются в общем случае как функция от состояний всех составляющих систему элементов и от входных сигналов всей системы в целом.
Функционирование системы описывается 3мя семейсвами функций:
- определяющих изменения состояний всех элементов системы
- задающих их выходные сигналы,
- вызывающих изменения в структуре системы.
Система называется детерминированной, если все эти функции являются обычными (однозначными) функциями. Если же все эти функции, или хотя бы часть их, представляют собой случайные функции, то система носит название вероятностной, или стохастической.
Классификации систем
Бир разделяет системы по степени сложности:
- простые динамические системы (например, 2 бильардных шара)
- сложные системы (большое количество элементов, но можно описать строго и ясны причинно-следственные связи элементов)
- очень сложные системы
Так же системы можно делить на:
- внутренние — дана нам на опыт как целостное образование (живой организм). Имеет временно-пространственные рамки
- внешние (совокупность живых организмов)
Примеры
- простая вероятностная система: подбрасывание монеты
- сложная вероятностная система: рефлексы у животного
- очень сложная вероятностная система: человеческий мозг, экономика государства
Класс очень сложных детерминированных систем является пустым
Бир: кибернетика изучает класс очень сложных вероятностных систем, а класс сложных вероятностных — теория операций.
Разделение на классы сложности — по свойственной системе природе управления (а не по количеству элементов).
Система vs. Множество
Противопоставление подходу теории систем теоретико-множественного подхода:
- в теории множеств первичен элемент, в теории систем — целое, множество, элемент существует лишь потому что существует система.
- в теории множеств мы можем образовывать множества произвольно, по любому нашему критерию
- в теории множеств предполагается что элементы множества заранее индивидуализированны, в теории систем — процедура выделения объектов входит в процесс исследования системы и является одним из важнейших его этапов.
- противопоставление внешней организации внутренней. Элементы объединены во множество «внешней волей». Структура системы определяется внутренними причинами
Понятие обратной связи
Под управленем в кибернетике понимается не принуждение, а саморегулирование
- оптимальное управление в случае отсутствия внешних изменений
- если существуют внешние возмущения (например, порывы ветра)
- если возмущения определяются другим разумным существом — игровая задача (можем рассматривать природу, как противника, реализующего неудачные для нас исходы)
Кибернетическая система при саморегулировании использует принцип обратной связи. Можно выделить отдельный класс систем, которые уменьшают сложность управления (например, поведение оркестра можно детерминированно представить на бумаге, но при игре будут возникать ошибки музыкантов — система недетерминированна, для уменьшения сложности управления ей можно использовать дирижера, который сводит случайности к минимуму).
Метасистема — система состаящая из управляющей и управляемой систем. Интеллектуальное управление системой осуществляется методом проб и ошибок, заключается в выработке системы управления во главе которой стоит новая подсистема, которая оказывается управляющим устройством высшего этапа эволюции. Возникает движение — метасистема, система управления положением позволяет выработать движений. ( СТРАННОЕ предложение )
- задача нахождения оптимальной программы
- нахождение наилучшего управления в зависимости от достяжимости нужного состояния.
Решение этой задачи является правилом управления по принципу обратной связи. Нам должно быть известно все об объекте. Данное допущение работает только относительно той модели мира, которую мы строим, но не относительно реального мира.
Сложность
Признаки сложности системы: сложность — множество элементов, необратимость, всегда уникальна.
+++Сложность в философии:
- Платон: простое — вечное, неизменное, божественное, единое. Чем выше статус идеи, тем проще. Сложное — изменчивое, непостоянное, вторичное по природе
- Аристотель — Простое — это природа вещи, а единое означает меру => отождесталять единое и простое нельзя. Сложное — составное, когда оно мыслиться в модусе бытия и как разделенное на части, когда оно мыслится в модусе небытия. Сложное — случайное бытие.
- Кузанский — Простота — свойство единого, свойство бога, свойство сущности вещи. Простота предшествует сложности онтологически
Сложность в кибернетике
Сложность кибернетических систем определяется двумя факторами.
- размерность системы (общее число параметров, характеризующих состояния всех её элементов).
- сложность структуры системы, определяющаяся общим числом связей между ее элементами и их разнообразием. Простая совокупность большого числа не связанных между собой элементов с повторяющимися от элемента к элементу простыми связями, ещё не составляет сложной системы.
Сложные (большие) кибернетические системы — это системы с описаниями, не сводящимися к описанию одного элемента и указанию общего числа таких (однотипных) элементов.
Чаще всего сложные кибернетические системы иерархичны.Сложность определяется уровнем организованности системы.
Можно ввести универсальную меру сложности (алгоритма/системы) — как минимальную возможную длинну программы для машины тьюринга, которая реализует данный алгоритм.
Источник
Сложная система
Типичные примеры сложных систем в области организации производства и технологии, автоматизированного управления, вычислительной техники, городского хозяйства и др. Способы построения математических моделей сложных систем и методы их исследования.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | доклад |
Язык | русский |
Дата добавления | 21.03.2016 |
Размер файла | 16,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Сложная система
Сложная система — составной объект, части которого можно рассматривать как системы, закономерно объединенные в единое целое в соответствии с определенными принципами или связанные между собой заданными отношениями. Понятием сложной системы пользуются в системотехнике, системном анализе, исследовании операций и при системном подходе в различных областях науки, техники и народный хозяйства. Сложную систему можно расчленить (не обязательно единственным образом) на конечное число частей, называемое подсистемами; каждую такую подсистему (высшего уровня) можно в свою очередь расчленить на конечное число более мелких подсистем и т. д., вплоть до получения подсистем первого уровня, т. н. элементов сложной системы, которые либо объективно не подлежат расчленению на части, либо относительно их дальнейшей неделимости имеется соответствующая договоренность. Подсистема, таким образом, с одной стороны, сама является сложной системой из нескольких элементов (подсистем низшего уровня), а с другой стороны — элементом системы старшего уровня.
В каждый момент времени элемент сложной системы находится в одном из возможных состояний; из одного состояния в другое он переходит под действием внешних и внутренних факторов. Динамика поведения элемента сложной системы проявляется в том, что состояние элемента и его выходные сигналы (воздействия на внешнюю среду и др. элементы сложной системы) в каждый момент времени определяются предыдущими состояниями и входными сигналами (воздействиями со стороны внешней среды и других элементов сложной системы), поступившими как в данный момент времени, так и ранее. Под внешней средой понимается совокупность объектов, не являющихся элементами данной сложной системы, но взаимодействие с которыми учитывают при ее изучении. Элементы сложной системы функционируют не изолированно друг от друга, а во взаимодействии: свойства одного элемента в общем случае зависят от условий, определяемых поведением других элементов; свойства сложной системы в целом определяются не только свойствами элементов, но и характером взаимодействия между ними (две сложные системы, состоящие из попарно одинаковых элементов, которые, однако, взаимодействуют между собой различным образом, рассматривают как две различные системы).
1. Типичные примеры сложных систем
В области организации производства и технологии — производственный комплекс предприятия как совокупность производственных комплексов цехов и участков, каждый из которых содержит некоторое число технологических линий; последние состоят из станков и агрегатов, рассматриваемых обычно как элементы сложной системы;
В области автоматизированного управления — процесс управления предприятием или отраслью народный хозяйства как совокупность процессов сбора данных о состоянии управляемых объектов, формирования потоков информации, ее накопления, передачи и обработки, синтеза управляющих воздействий;
В области вычислительной техники — математическое обеспечение современных вычислительных комплексов, включающее операционную систему для управления последовательностью вычислений и координации работы всех устройств комплекса, библиотеку стандартных программ, а также средства автоматизации программирования (алгоритмические языки, трансляторы, интерпретирующие системы), средства обслуживания и контроля вычислений; каждую из упомянутых частей можно представить в виде системы с иерархической многоуровневой структурой, состоящей из отдельных взаимосвязанных программ, процедур, операторов и т. д.;
В области городского хозяйства — регулирование уличного движения в крупном городе или районе с большими потоками автомобилей на автомагистралях и очередями на перекрестках средствами автоматизированного управления движением с учетом реальных ситуаций и пропускной способности улиц;
Системы автоматической городской и междугородной телефонной связи; другие экономические, организационные, биологические и т. п.
Объекты и процессы.
2. Методы исследования сложных систем
Основной метод исследования — математическое моделирование, в том числе имитация процессов функционирования сложной системы на ЭВМ (машинный эксперимент). Для моделирования сложной системы необходимо формализовать процессы ее функционирования, т. е. представить эти процессы в виде последовательности четко определяемых событий, явлений или процедур, и затем построить математическое описание сложной системы. Элементы сложной системы обычно описывают в виде динамических систем (в широком смысле), к которым, кроме классических динамических систем, относят также и другие детерминистические и стохастические объекты — такие как конечные автоматы, вероятностные автоматы, системы массового обслуживания, кусочно-линейные агрегаты и т. п. Взаимодействие элементов сложной системы обычно представляют как обмен сигналами между ними и описывают четырьмя моделями: моделью формирования выходного сигнала элемента с учетом условий его функционирования; сопряжения элементов сложной системы сетью каналов связи, обеспечивающих передачу сигналов между элементами; изменения сигнала в процессе его прохождения через канал; поведения элемента при получении им сигнала.
Первая и последняя модели естественным образом включаются в модель процесса функционирования динамической системы. Аналогично модель преобразования сигнала можно получить, если каждый реальный канал передачи сигналов (вместе с селектирующими и преобразующими устройствами) представить в виде соответствующей динамической системы и рассматривать как самостоятельный элемент сложной системы. При формализации сопряжения элементов сложной системы обычно вход (выход) элемента представляют в виде совокупности «элементарных» входов (выходов) — по числу характеристик, описывающих соответствующие сигналы. Предполагается, что характеристики сигналов передаются в сложной системе независимо друг от друга по «элементарным каналам», связывающим входы и выходы соответствующих элементом. Сопряжение элементов сложной системы задается соотношением, по которому данному входу r-го элемента ставится в соответствие тот выход j-го элемента, который связан с ним «элементарным каналом». Если сложная система расчленена на подсистемы, содержащие два элемента и более, то для описания каждой подсистемы необходима соответствующая одноуровневая схема сопряжения; кроме того, нужна схема сопряжения второго уровня для описания связей между подсистемами. Совокупность этих схем сопряжения составляет двухуровневую схему сопряжения сложной системы. Когда подсистемы объединяются в более крупные подсистемы, образуется трехуровневая схема сопряжения и т. д. Многоуровневые схемы сопряжения аналогичного вида применяются и в сложных системах с переменной во времени, управляемой или стохастической структурой связей между элементами. Сложная система с многоуровневой схемой сопряжения, элементы которой являются динамическими системами, можно также рассматривать как динамическую систему; ее характеристики определяются характеристиками элементов и схемой сопряжения. Поэтому на сложной системы можно распространить постановку и методы решения многих задач, относящихся к анализу и синтезу классических динамических систем, конечных и вероятностных автоматов, систем массового обслуживания и т. д.
Способы построения математических моделей сложных систем и методы их исследования — предмет возникшей в 60-х гг. 20 в. новой научной дисциплины — теории сложных систем. Для математического описания элементов сложной системы пользуются методами теории функций, современной алгебры и функционального анализа. Исследование математических моделей сложных систем обычно начинают с оценки функциональных характеристик, являющихся показателями эффективности, надежности, помехозащищенности, качества управления и других важных свойств сложных систем. С формальной точки зрения упомянутые показатели представляются функционалами, заданными на множестве траекторий движения сложной системы. Рассмотрение зависимости функционалов от параметров сложной системы открывает возможности для использования при анализе сложных систем методов теории поля.
Изучение отношений между элементами и подсистемами, определение роли и места каждой подсистемы в общем процессе функционирования системы составляют предмет структурного анализа сложных систем. Так как схема сопряжения любой сложной системы представляется как совокупность предикатов, определенных на множестве входов и выходов ее элементов, то для изучения структуры сложной системы используют аппарат математической логики и теории графов. Методы структурного анализа позволяют выделить в сложной системе наборы подсистем, находящихся в заданных отношениях, и представить сложную систему как совокупность объектов с хорошо изученными типичными структурами. Кроме того, эти методы применяют для оценки т. н. структурных характеристик, которые в количественном виде отражают те или иные частные свойства схемы сопряжения элементов сложной системы. Количественную оценку функциональных и структурных характеристик дополняют качественным исследованием, проводимым при помощи методов т. н. качественной теории сложных систем. Сюда в первую очередь входят исследование устойчивости систем, в том числе построение областей устойчивости характеристик в пространстве параметров сложной системы, выделение типичных режимов функционирования сложных систем, оценка достижимости, управляемости и наблюдаемости сложных систем, анализ асимптотического поведения и т. д.
В 70-х гг. для исследования сложных систем стали широко применять алгебраические методы теории полугрупп, модулей, структур, обычно используемые при решении задач динамики детерминистических систем, декомпозиции автоматов, теории реализации линейных систем и др. В связи с необходимостью моделировать на ЭВМ процессы функционирования объектов большой сложности возникают серьезные проблемы, связанные с ростом трудоемкости вычислений. Для снижения объема работ при подготовке моделей целесообразно использовать универсальные автоматизированные моделирующие алгоритмы, способные настраиваться на любые конкретные объекты из заданного класса. Наличие имитационной модели позволяет применять специальные методы идентификации сложных систем и обработки экспериментальных данных, полученных в результате натурных испытаний систем. Испытываемый объект рассматривается как сложная система с неизвестными параметрами элементов и параметрами сопряжения. Неизвестные параметры оценивают посредством сравнения значений функциональных и структурных характеристик сложной системы, устанавливаемых экспериментально и в результате моделирования. Это дает возможность определять поправки к первоначальным значениям параметров сложной системы и добиваться достаточной точности оценки неизвестных параметров методом последовательных приближений.
Успешно развиваются также и аналитические методы исследования сложных систем, основанные на теории случайных процессов.
сложный система математический модель
Литература
1. Бусленко Н. П., К теории сложных систем, «Изв. АН СССР. Техническая кибернетика», 1963, № 5;
2. Коваленко И. Н., О некоторых классах сложных систем, «Изв. АН СССР. Техническая кибернетика», 1964, № 6, 1965, № 1, № 3;
3. Калман Р., Фалб П., Арбиб М., Очерки по математической теории систем, пер. с англ., М., 1971;
4. Бусленко Н. П., Калашников В. В., Коваленко И. Н., Лекции по теории сложных систем, М., 1973;
5. Директор С., Рорер Р., Введение в теорию систем, пер. с англ., М., 1974.
Источник