Понятие функции способы задания функции виды функции

Понятие функции. Способы задания функции

Понятие функции является одним из основных понятий современной математики. С этим понятием часто встречаются при изучении реальных процессов в природе, науке и технике. С помощью различных функций могут быть описаны многие процессы и явления реального мира.

Определение. Отображения , где будем называть (вещественной) функцией действительного переменного. — область определения — совокупность всех значений независимой переменной х, для которых функция определена.

— множество значений f или образ f.

Определение. Если каждому элементу х множества X ( ) ставится в соответствие вполне определенный элемент у множества Y , то говорят, что на множестве X задана функция.

y = f(x), y = F(x) — функциональная зависимость х и у.

f, F — характеристики функции, х — независимая переменная (аргумент),

у — зависимая переменная.

Рассматривают три способа задания функции: аналитический, табличный и графический.

Способ задания функции при помощи формулы называется аналитическим.Этот способ является основным в мат. анализе, но на практике не удобен.

2. Табличный способ задания функции .

Функцию можно задать с помощью таблицы, содержащей значения аргумента и соответствующие им значения функции.

3. Графический способ задания функции .

Функция у = f(х) называется заданной графически, если построен ее график. Такой способ задания функции дает возможность определять значения функции только приближенно, так как построение графика и нахождение на нем значений функции сопряжено с погрешностями

Классификация функций.

Элементарные функции разделяют на алгебраические и неалгебраические (трансцендентные).

Алгебраической называют функцию, в которой над аргументом производится конечное число алгебраических действий.

К ним относятся:

— целая рациональная функция (многочлен, полином)

— дробно-рациональная функция – отношение двух многочленов

— иррациональная функция (среди действий над аргументом есть извлечение корня).

К трансцендентным относятся: показательная, логарифмическая, тригонометрические и обратные тригонометрические функции.

Четные и нечетные функции.

Функция у = f(х) называется четной или нечетной, если она определена на множестве симметричном относительно нулевой точки и обладает на нем свойством f(-x)=f(x) или свойством f(-x) = -f(x). В противном случае функцией общего вида. График четной функции симметричен относительно оси ординат, график нечетной симметричен относительно начала координат.

Читайте также:  Язык как способ отражения мира

Произведения двух четных или двух нечетных функций есть функция четная, произведения четной функции на нечетную есть нечетная функция

Монотонные функции.

Пусть (a,b) промежуток с концами в точках a и b, где a

Функция у = f(х) называется возрастающей (убывающей) на промежутке (a,b), если большему значению аргумента из этого промежутка соответствует большее (меньшее) значение функции.

Пусть и .

Тогда функция возрастает на промежутке X, если (запись на (a,b)) и убывает, если (запись на (a,b)) (см. рис. 1).

Запись и

Функции возрастающие и убывающие называется монотонными. К монотонным функциям относятся также неубывающие и невозрастающие функции.

Ограниченные функции.

Функция называется ограниченной на промежутке (a,b), если такое, что

.

В противном случае функция называется неограниченной.

Периодическая функция.

Функция называется периодической с периодом , если справедливо .

Источник

Функция. Способы задания функций.

Функция является заданной, иначе говоря, известной, если для каждого значения возможного числа аргументов можно узнать соответствующее значение функции. Наиболее распространенные три способа задания функции: табличный, графический, аналитический, существуют еще словесный и рекурсивный способы.

1. Табличный способ наиболее широко распространен (таблицы логарифмов, квадратных корней), основное его достоинство – возможность получения числового значения функции, недостатки заключаются в том, что таблица может быть трудно читаема и иногда не содержит промежуточных значений аргумента.

Аргумент х принимает заданные в таблице значения, а у определяется соответственно этому аргументу х.

2. Графический способ заключается в проведении линии (графика), у которой абсциссы изображают значения аргумента, а ординаты – соответствующие значения функции. Часто для наглядности масштабы на осях принимают разными.

Например: для нахождения по графику у, которому соответствует х = 2,5 необходимо провести перпендикуляр к оси х на отметке 2,5. Отметку можно довольно точно сделать с помощью линейки. Тогда найдем, что при х = 2,5 у равно 7,5, однако если нам необходимо найти значение у при х равном 2,76, то графический способ задания функции не будет достаточно точным, т.к. линейка не дает возможности для столь точного замера.

Достоинства этого способа задания функций заключаются в легкости и целостности восприятия, в непрерывности изменения аргумента; недостатком является уменьшение степени точности и сложность получения точных значений.

3. Аналитический способ состоит в задании функции одной или несколькими формулами. Основным достоинством этого способа является высокая точность определения функции от интересующего аргумента, а недостатком является затрата времени на проведение дополнительных математических операций.

Функцию можно задать с помощью математической формулы y=x 2 , тогда если х равно 2, то у равно 4, возводим х в квадрат.

4. Словесный способ состоит в задании функции обычным языком, т.е. словами. При этом необходимо дать входные, выходные значения и соответствие между ними.

Словесно можно задать функцию (задачу), принимающуюся в виде натурального аргумента х с соответствующим значением суммы цифр, из которых состоит значение у. Поясняем: если х равно 4, то у равно 4, а если х равно 358, то у равен сумме 3 + 5 + 8, т. е 16. Далее аналогично.

5. Рекурсивный способ состоит в задании функции через саму себя, при этом значения функции определяются через другие ее же значения. Такой способ задания функции используется в задании множеств и рядов.

При разложении числа Эйлера задается функцией:

Ее сокращение приведено ниже:

При прямом расчёте возникает бесконечная рекурсия, но можно доказать, что значение f(n) при возрастании n стремится к единице (поэтому, несмотря на бесконечность ряда, значение числа Эйлера конечно). Для приближённого вычисления значения e достаточно искусственно ограничить глубину рекурсии некоторым наперёд заданным числом и по достижении его использовать вместо f(n) единицу.

Источник

Понятие функции. Способы задания функции

Функцией называется закон, по которому числу х из заданного множества Х, поставлено в соответствие только одно число у, пишут , при этом x называют аргументом функции, y называют значением функции.

Существуют разные способы задания функций.

1. Аналитический способ.

Аналитический способ — это наиболее часто встречающийся способ задания функции.

Заключается он в том, что функция задается формулой, устанавливающей, какие операции нужно произвести над х, чтобы найти у. Например .

Рассмотрим первый пример — . Здесь значению x = 1 соответствует , значению x = 3 соответствует и т. д.

Функция может быть задана на разных частях множества X разными функциями.

Во всех ранее приведенных примерах аналитического способа задания, функция была задана явно. То есть, справа стояла переменная y, а слева формула от переменной х. Однако, при аналитическом способе задания, функция может быть задана и неявно.

Например . Здесь, если мы задаем переменной x значение, то, чтобы найти значение переменной у (значение функции), мы должны решить уравнение. Например, для первой заданной функции при х = 3, будем решать уравнение:

. То есть, значение функции при х = 3 равно -4/3.

При аналитическом способе задания, функция может быть задана параметрически — это, когда х и у выражены через некоторый параметр t. Например,

Здесь при t = 2, x = 2, y = 4. То есть, значение функции при х = 2 равно 4.

2. Графический способ.

При графическом способе вводится прямоугольная система координат и в этой системе координат изображается множество точек с координатами (x,y). При этом . Пример:

3. Словесный способ.

Функция задается с помощью словесной формулировки. Классический пример – функция Дирихле.

«Функция равна 1, если х – рациональное число; функция равна 0, если х – иррациональное число».

4. Табличный способ.

Табличный способ наиболее удобен, когда множество Х конечно. При этом способе составляется таблица, в которой каждому элементу из множества Х, ставится в соответствие число Y.

Ошибка в тексте? Выдели её мышкой и нажми

Остались рефераты, курсовые, презентации? Поделись с нами — загрузи их здесь!

Источник

Оцените статью
Разные способы