Понятие функции определение способы задания функции область определения множество значений

Математика

Тестирование онлайн

Понятие функции

Зависимость одной переменной от другой называется функциональной зависимостью. Зависимость переменной y от переменной x называется функцией, если каждому значению x соответствует единственное значение y.

Обозначение:

Переменную x называют независимой переменной или аргументом, а переменную y — зависимой. Говорят, что y является функцией от x. Значение y, соответствующее заданному значению x, называют значением функции.

Все значения, которые принимает x, образуют область определения функции; все значения, которые принимает y, образуют множество значений функции.

Обозначения:

D(f) — значения аргумента. E(f) — значения функции. Если функция задана формулой, то считают, что область определения состоит из всех значений переменной, при которых эта формула имеет смысл.

Графиком функции называется множество всех точек на координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты — соответствующим значениям функции. Если некоторому значению x=x0 соответствуют несколько значений (а не одно) y, то такое соответствие не является функцией. Для того чтобы множество точек координатной плоскости являлось графиком некоторой функции, необходимо и достаточно, чтобы любая прямая параллельная оси Оу, пересекалась с графиком не более чем в одной точке.

Способы задания функции

1) Функция может быть задана аналитически в виде формулы. Например,

2) Функция может быть задана таблицей из множества пар (x; y).

3) Функция может быть задана графически. Пары значений (x; y) изображаются на координатной плоскости.

Монотонность функции

Функция f(x) называется возрастающей на данном числовом промежутке, если большему значению аргумента соответствует большее значение функции. Представьте, что некоторая точка движется по графику слева направо. Тогда точка будет как бы «взбираться» вверх по графику.

Функция f(x) называется убывающей на данном числовом промежутке, если большему значению аргумента соответствует меньшее значение функции. Представьте, что некоторая точка движется по графику слева направо. Тогда точка будет как бы «скатываться» вниз по графику.

Функция, только возрастающая или только убывающая на данном числовом промежутке, называется монотонной на этом промежутке.

Нули функции и промежутки знакопостоянства

Значения х, при которых y=0, называется нулями функции. Это абсциссы точек пересечения графика функции с осью Ох.

Такие промежутки значений x, на которых значения функции y либо только положительные, либо только отрицательные, называются промежутками знакопостоянства функции.

Четные и нечетные функции

Четная функция обладает следующими свойствами:
1) Область определения симметрична относительно точки (0; 0), то есть если точка a принадлежит области определения, то точка -a также принадлежит области определения.
2) Для любого значения x, принадлежащего области определения , выполняется равенство f(-x)=f(x)
3) График четной функции симметричен относительно оси Оу.

Нечетная функция обладает следующими свойствами:
1) Область определения симметрична относительно точки (0; 0).
2) для любого значения x, принадлежащего области определения , выполняется равенство f(-x)=-f(x)
3) График нечетной функции симметричен относительно начала координат (0; 0).

Читайте также:  Интересные способы работы с тестом

Не всякая функция является четной или нечетной. Функции общего вида не являются ни четными, ни нечетными.

Периодические функции

Функция f называется периодической, если существует такое число , что при любом x из области определения выполняется равенство f(x)=f(x-T)=f(x+T). T — это период функции.

Всякая периодическая функция имеет бесконечное множество периодов. На практике обычно рассматривают наименьший положительный период.

Значения периодической функции через промежуток, равный периоду, повторяются. Это используют при построении графиков.

Источник

Что такое Функция?

О чем эта статья:

7 класс, 11 класс, ЕГЭ/ОГЭ

Понятие функции

Определение функции можно сформулировать по-разному. Рассмотрим несколько вариантов, чтобы усвоить наверняка.

1. Функция — это взаимосвязь между величинами, то есть зависимость одной переменной величины от другой.

Знакомое обозначение y = f (x) как раз и выражает идею такой зависимости одной величины от другой. Величина у зависит от величины х по определенному закону, или правилу, которое обозначается f.

Вывод: меняя х (независимую переменную, или аргумент) — меняем значение у.

2. Функция — это определенное действие над переменной.

Значит, можно взять величину х, как-то над ней поколдовать — и получить соответствующую величину у.

В технической литературе можно встретить такие определения функции для устройств, в которых на вход подается х — на выходе получается у. Схематично это выглядит так:

В этом значении слово «функция» используют и в далеких от математики областях. Например, так говорят о функциях ноутбука, костей в организме или даже о функциях менеджера в компании. В каждом перечисленном случае речь идет именно о неких действиях.

3. Функция — это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один элемент второго множества. Это самое популярное определение в учебниках по математике.

Например, в функции у = 2х каждому действительному числу х ставит в соответствие число в два раза большее, чем х.

Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.

Например, для функции вида

область определения выглядит так:

  • х ≠ 0 (потому что на ноль делить нельзя)

И записать это можно так: D (y): х ≠ 0.

Область значений — множество у, то есть это значения, которые может принимать функция.

Например, естественная область значений функции y = x2 — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.

Для примера рассмотрим соответствие между двумя множествами — человек-владелец странички в инстаграм и сама страничка, у которой есть владелец. Такое соответствие можно назвать взаимно-однозначным — у человека есть страничка, и это можно проверить. И наоборот — по аккаунту в инстаграм можно проверить, кто им владеет.

Читайте также:  Способ неопределенных коэффициентов для полиномов

В математике тоже есть такие взаимно-однозначные функции. Например, линейная функция у = 3х +2. Каждому значению х соответствует одно и только одно значение у. И наоборот — зная у, можно сразу найти х.

Источник

Лекция по теме «Функция» для 1 курса

Лекция: Понятие функции. Основные свойства функции.

Преподаватель: Горячева А.О.

О. : Правило (закон) соответствия между множествами X и Y, по которому для каждого элемента из множества X можно найти один и только один элемент из множества Y, называется функцией .

Функция считается заданной, если:

— задана область определения функции X ;

— задана область значений функции Y ;

— известно правило (закон) соответствия, причем такое, что для каждого значения аргумента может быть найдено только одно значение функции. Это требование однозначности функции является обязательным.

О. : Множество X всех допустимых действительных значений аргументаx, при которых функция y = f (x) определена, называется областью определения функции .

Множество Y всех действительных значений y, которые принимает функция, называется областью значений функции .

Рассмотрим некоторые способы задания функций.

Табличный способ . Довольно распространенный, заключается в задании таблицы отдельных значений аргумента и соответствующих им значений функции. Такой способ задания функции применяется в том случае, когда область определения функции является дискретным конечным множеством.

Графический способ . Графиком функции y = f(x) называется множество всех точек плоскости, координаты которых удовлетворяют данному уравнению.

Графический способ задания функции не всегда дает возможность точно определить численные значения аргумента. Однако он имеет большое преимущество перед другими способами — наглядность. В технике и физике часто пользуются графическим способом задания функции, причем график бывает единственно доступным для этого способом.

Аналитический способ . Чаще всего закон, устанавливающий связь между аргументом и функцией, задается посредством формул. Такой способ задания функции называется аналитическим.

Этот способ дает возможность по каждому численному значению аргумента x найти соответствующее ему численное значение функции y точно или с некоторой точностью.

Словесный способ . Этот способ состоит в том, что функциональная зависимость выражается словами.

Пример 1: функция E(x) — целая часть числа x. Вообще через E(x) = [x] обозначают наибольшее из целых чисел, которое не превышает x. Иными словами, если x = r + q, где r — целое число (может быть и отрицательным) и q принадлежит интервалу [0; 1), то [x] = r. Функция E(x) = [x] постоянна на промежутке [r; r+1) и на нем [x] = r.

Пример 2: функция y = — дробная часть числа. Точнее y = = x — [x], где [x] — целая часть числа x. Эта функция определена для всех x. Если x — произвольное число, то представив его в виде x = r + q ( r = [x]), где r — целое число и q лежит в интервале [0; 1), получим = r + q — r=q

Основными недостатками словесного способа задания функции являются невозможность вычисления значений функции при произвольном значении аргумента и отсутствие наглядности. Главное преимущество же заключается в возможности задания тех функций, которые не удается выразить аналитически.

Читайте также:  Сравнение дробей разными способами 6 класс

Основные свойства функции .

1. Четность и нечетность

Функция называется четной , если

– область определения функции симметрична относительно нуля;

– для любого х из области определения f(-x) = f(x).

График четной функции симметричен относительно оси 0y

Функция называется нечетной , если

– область определения функции симметрична относительно нуля;

– для любого х из области определения f(-x) = –f(x).

График нечетной функции симметричен относительно начала координат.

Функция f(x) называется периодической с периодом Т, если для любого х из области определения f(x) = f(x+Т) = f(x-Т).

График периодической функции состоит из неограниченно повторяющихся одинаковых фрагментов.

3 . Монотонность (возрастание, убывание).

Функция f(x) возрастает на множестве Р , если для любых x1 и x2 из этого множества, таких, что x1

Функция f(x) убывает на множестве Р , если для любых x1 и x2 из этого множества, таких, что x1 f(x2).

Точка Хmax называется точкой максимума функции f(x) , если для всех х из некоторой окрестности Хmax , выполнено неравенство f(х)

Значение Ymax = f(Xmax) называется максимумом этой функции.

Хmax – точка максимума

Точка Хmin называется точкой минимума функции f(x) , если для всех х из некоторой окрестности Хmin , выполнено неравенство f(х) f(Xmin).

Значение Ymin=f(Xmin) называется минимумом этой функции.

Xmin – точка минимума

Xmin, Хmax – точки экстремума

Ymin, Уmax – экстремумы.

Нулем функции y = f(x) называется такое значение аргумента х , при котором функция обращается в нуль: f(x) = 0.

Функция называется ограниченной , если существует такое положительное число M, что |f ( x )| M для всех значений x .

Если такого числа не существует, то функция — неограниченная.

Задания (выполнить устно):

1. График какой из функций изображен на рисунке а)?

1) y=6x; 2) y=6x 2 ; 3) y= , 4) y=

2. Укажите нули функции (рис. б):

4) функция не имеет нулей

3.Найдите все значения х, при которых функция принимает положительные значения (рис. в):

1) (0;1); 2) (-1;1); 3) (0;+ ); 4) (- ;0)

4. Найдите все значения х, при которых функция принимает неположительные значения (рис. г):

1) (- ;0]; 2) (- ;-2] [2;+ ); 3) [-2;2]; 4) [-2;0]

5. Найдите все значения х, при которых функция принимает отрицательные значения (рис. д):

1) (-2;0); 2) [-6;6]; 3) (- ;0); 4) (- ;0) (0;+ )

6. Найдите все значения х, при которых функция принимает неотрицательные значения (рис. е):

1) [0;+ ); 2) (- ;0) (0;+ ); 3) (- ;+ ); 4) 0.

7. Найдите наибольшее значение функции (рис. з).

1) -6; 2) 0; 3) 9; 4) 10.

8. Найдите наибольшее значение функции на отрезке [-1;1] (рис. и).

Источник

Оцените статью
Разные способы