Получить циклопентан всеми возможными способами

Содержание
  1. Получение циклоалканов
  2. Получение циклоалканов
  3. 1. Дегидрирование алканов
  4. 3. Дегалогенирование дигалогеналканов
  5. Добавить комментарий Отменить ответ
  6. Циклопентан
  7. Свойства и применение циклопентана
  8. Конформация циклопентана
  9. Готовые работы на аналогичную тему
  10. Получение циклопентана
  11. Производные циклопентана
  12. Циклоалканы
  13. Строение циклоалканов
  14. Изомерия циклоалканов
  15. Структурная изомерия
  16. Геометрическая (цис-транс-) изомерия
  17. Номенклатура циклоалканов
  18. Химические свойства циклоалканов
  19. 1. Реакции присоединения к циклоалканам
  20. 1.1. Гидрирование циклоалканов
  21. 1.2. Галогенирование циклоалканов
  22. 1.3. Гидрогалогенирование
  23. 2. Реакции замещения
  24. 2.1. Галогенирование
  25. 2.2. Нитрование циклоалканов
  26. 2.3. Дегидрирование
  27. 3. Окисление циклоалканов
  28. 3.1. Горение
  29. 3.2. Окисление
  30. Получение циклоалканов
  31. 1. Дегидрирование алканов
  32. 3. Дегалогенирование дигалогеналканов

Получение циклоалканов

Циклоалканы – это предельные (насыщенные) углеводороды, которые содержат замкнутый углеродный цикл.

Общая формула циклоалканов CnH2n, где n≥3.

Получение циклоалканов

1. Дегидрирование алканов

Алканы с длинным углеродным скелетом, содержащие 5 и более атомов углерода в главной цепи, при нагревании в присутствии металлических катализаторов образуют циклические соединения.

При этом протекает дегидроциклизация – процесс отщепления водорода с образованием замкнутого цикла.

Пентан и его гомологи, содержащие пять атомов углерода в главной цепи, при нагревании над платиновым катализатором образуют циклопентан и его гомологи:

Алканы с углеродной цепью, содержащей 6 и более атомов углерода в главной цепи, при дегидрировании образуют устойчивые шестиатомные циклы, т. е. циклогексан и его гомологи, которые далее превращаются в ароматические углеводороды.

Гексан при нагревании в присутствии оксида хрома (III) в зависимости от условий может образовать циклогексан и потом бензол:

Гептан при дегидрировании в присутствии катализатора образует метилциклогексан и далее толуол:

Дегидроциклизация алканов — важный промышленный способ получения циклоалканов.

2. Гидрирование бензола и его гомологов

При гидрировании бензола при нагревании и в присутствии катализатора образуется циклогексан:

При гидрировании толуола образуется метилциклогексан:

Этим способом можно получить только циклогексан и его гомологи с шестичленным кольцом.

3. Дегалогенирование дигалогеналканов

При действии активных металлов на дигалогеналканы, в которых между атомами галогенов находится три и более атомов углерода.

Например, 1,4-дибромбутан реагирует с цинком с образованием циклобутана

Таким образом можно синтезировать циклоалканы заданного строения, в том числе циклоалканы с малыми циклами (С3 и С4).

Добавить комментарий Отменить ответ

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Источник

Циклопентан

Вы будете перенаправлены на Автор24

Циклопентан является легковоспламеняющимся алициклическим углеводородом с химической формулой $C_5H_<10>$ состоящим из пятичленного углеродного где каждый атом углерода связан с двумя атомами водорода, находящимися выше и ниже плоскости молекулы.

Свойства и применение циклопентана

Циклопентан при н.у. представляет собой бесцветную жидкость с бензиновым запахом. Его температура плавления составляет -94$^\circ$С, а температура кипения 49$^\circ$C.

Типичной структурой циклопентана является конформация «конверта»:

Циклопентан используется в производстве синтетических смол и каучуковых клеев, а также в качестве вспенивающего агента при производстве полиуретановой изоляционной пены. Он также используется в качестве фреона во многих бытовых приборах, таких как холодильники и морозильники, замещая экологически вредные альтернативы, такие как Фреон-11 и Фреон-141.

Алкилпроизводные циклопентана обладают низкой летучестью и используются для производства смазочных материалов.

Конформация циклопентана

В гипотетической плоской структуре циклопентана валентные углы должны составлять 108$^\circ$, что очень близко к значению тетраэдрического угла 109,5$^\circ$. Однако в такой плоской структуре $C_5H_<10>$ должно находится десять пар заслоненных $C-H$ связей, что соответствует 10 ккал/моль (1 ккал/моль за каждую такую связь) торсионного напряжения. Поэтому реальные молекулы циклопентана имеют неплоскую форму и напоминают «открытый конверт»:

Читайте также:  Способы государственного управления реферат

Готовые работы на аналогичную тему

В этой конформации несколько $H-H$ взаимодействий становятся скошенными, но одновременно происходит небольшое искажение валентных углов.

Циклопентан относится к числу т. н. динамических структур, в нем за счёт внутренних вращений одна конформация (конверта) переходит в другую (полукресла):

Получение циклопентана

Он образуется в результате крекинга циклогексана в присутствии оксида алюминия при высокой температуре и давлении.

Также существует путь синтеза через метилциклопентан:

Впервые он был получен в 1893 году немецким химиком Вислиценусом из циклопентанона:

Аналогично его получают через восстановление гидразином:

Его также можно получить при гидрировании циклопентадиена:

Производные циклопентана

Метилциклопентан представляет собой органическое соединение с химической формулой $CH_3C_5H_9$. Это бесцветная, легковоспламеняющаяся жидкость со слабым запахом. Метилциклопентан является компонентом нафтеновой фракции нефти. Его, как правило, получают в виде смеси с циклогексаном. Метилциклопентан не является идеально плоским и может «морщиться» для снятия напряжения в его структуре.

Циклопентанон — органическое соединение с формулой $(CH_2)_4CO$. Этот циклический кетон представляет собой бесцветную летучую жидкость.

После обработки адипиновой кислоты гидроксидом бария при повышенных температурах, она подвергается кетонизации с образованием циклопентанона:

$(CH_2)_4(CO_2H)_2 \to (CH_2)_4CO + H_2O + CO_2$

Циклопентанон является общим предшественником ароматов, особенно связанных с жасмином и жасмоном. Это универсальный синтетический промежуточный продукт, являющийся предшественником циклофенобарбитала:

Источник

Циклоалканы

Циклоалканы – это предельные (насыщенные) углеводороды, которые содержат замкнутый углеродный цикл.

Общая формула циклоалканов CnH2n, где n≥3.

Строение циклоалканов

Атомы углерода в молекулах циклоалканов находятся в состоянии sp 3 -гибридизации и образует четыре σ-связи С–С и С–Н. В зависимости от размеров цикла меняются валентные углы.

В малых циклах (циклопропан и циклобутан) валентные углы между связями С–С сильно отличаются от валентных углов между связями С–С в алканах (109 о 35′). Поэтому в малых циклах возникает напряжение, которое приводит к высокой реакционной способности таких циклоалканов.

Самый простой циклоалкан — циклопропан, представляет, по сути, плоский треугольник.

σ-Связи в циклопропане называют «банановыми». Они не лежат вдоль оси, соединяющей ядра атомов, а отклоняются от неё, уменьшая напряжение в молекуле циклопропана.

По свойствам «банановые» связи напоминают π-связи. Они легко разрываются.

Поэтому циклопропан очень легко вступает в реакции присоединения с разрывом углеродного цикла.

Остальные циклоалканы имеют неплоское строение. Молекула циклобутана имеет перегиб по линии, соединяющей первый и третий атомы углерода в кольце:

Циклобутан также вступает в реакции присоединения, но угловое напряжение в циклобутане меньше, чем в циклопропане, поэтому реакции присоединения к циклобутану протекают сложнее.

Большие циклы имеют более сложное, неплоское строение, вследствие чего угловое напряжение в молекулах больших циклоалканов почти отсутствует.

Циклоалканы с большим циклом не вступают в реакции присоединения. Для них характерны реакции замещения.

Строение циклопентана также неплоское, молекула представляет собой так называемый «конверт».

Молекула циклогексана не является плоским многоугольником и принимает различные конформации, имеющие названия «кресло» и «ванна»:

Читайте также:  Способы определения качества товара 8 класс технология кратко

Изомерия циклоалканов

Структурная изомерия

Для циклоалканов характерна структурная изомерия, связанная с разным числом углеродных атомов в кольце, разным числом углеродных атомов в заместителях и с положением заместителей в цикле.

  • Изомеры с разным числом атомов углерода в цикле отличаются размерами углеродного цикла.
Например.

Изомеры с разным числом углеродных атомов в цикле – это этилциклопропан и метилциклобутан с общей формулой С5Н10

Этилциклопропан Метилциклобутан
  • Изомеры с разным числом атомов углерода в заместителях отличаются строением заместителей у одинакового углеродного цикла.
Например.

Структурные изомеры с различным числом углеродных атомов в заместителях – 1-метил-2-пропилциклопентан и 1,2-диэтилциклопентан

1-Метил-2-пропилциклопентан 1,2-Диэтилциклопентан
  • Изомеры с разным положением одинаковых заместителей в углеродном цикле.
Например.
1,1-Диметилциклогексан 1,2-Диметилциклогексан
  • Межклассовая изомерия: циклоалканы изомерны алкенам.
Например.

Формуле С3Н6 соответствуют циклопропан и пропен.

Циклопропан Пропилен

Геометрическая (цис-транс-) изомерия

У циклоалканов с двумя заместителями, расположенными у соседних атомов углерода в цикле цис-транс-изомерия обусловлена различным взаимным расположением в пространстве заместителей относительно плоскости цикла.

В цис-изомерах заместители находятся по одну сторону от плоскости цикла, в транс-изомерах – заместители расположены по разные стороны.
Например.

В молекуле 1,2-диметилциклопропана две группы СН3 могут находиться по одну сторону от плоскости цикла (цис-изомер) или по разные стороны (транс-изомер):

цис-1,2-Диметилциклопропан транс-1,2-Диметилциклопропан

Для 1,1-диметилциклопропана цис-транс-изомерия не характерна.

Номенклатура циклоалканов

В названиях циклоалканов используется префикс -ЦИКЛО.

Название циклоалкана Структурная формула
Циклопропан
Циклобутан
Циклопентан
Циклогексан

Название циклоалканов строится по следующим правилам:

1. Цикл принимают за г лавную углеродную цепь. При этом считают, что углеводородные радикалы, которые не входят в главной цепь, являются в ней заместителями.

2. Нумеруют атомы углерода в цикле так, чтобы атомы углерода, которые соединены с заместителями, получили минимальные возможные номера. Причем нумерацию следует начинать с более близкого к старшей группе конца цепи.

3. Называют все радикалы, указывая впереди цифры, которые обозначают их расположение в главной цепи.

Для одинаковых заместителей эти цифры указывают через запятую, при этом количество одинаковых заместителей обозначается приставками ди- (два), три- (три), тетра- (четыре), пента- (пять) и т.д.

Например, 1,1-диметилциклопропан или 1,1,3-триметилциклопентан.

4. Названия заместителей со всеми приставками и цифрами располагают в алфавитном порядке.

5. Называют углеродный цикл.

Химические свойства циклоалканов

Циклоалканы с малым циклом (циклопропан, циклобутан и их замещенные гомологи) из-за большой напряженности в кольце могут вступать в реакции присоединения.

1. Реакции присоединения к циклоалканам

Чем меньше цикл и чем больше угловое напряжение в цикле, тем легче протекают реакции присоединения. Способность вступать в реакции присоединения уменьшается в ряду: циклопропан > циклобутан > циклопентан.

1.1. Гидрирование циклоалканов

С водородом могут реагировать малые циклы, а также (в жестких условиях) циклопентан. При этом происходит разрыв кольца и образование алкана.

Циклопропан и циклобутан довольно легко присоединяют водород при нагревании в присутствии катализатора:

Циклопентан присоединяет водород в жестких условиях:

Бромирование протекает более медленно и избирательно.

Циклогексан и циклоалканы с большим число атомов углерода в цикле с водородом не реагируют.

1.2. Галогенирование циклоалканов

Циклопропан и циклобутан реагируют с галогенами, при этом тоже происходит присоединение галогенов к молекуле, сопровождающееся разрывом кольца.

Например. Циклопропан присоединяет бром с образованием 1,3-дибромпропана:

1.3. Гидрогалогенирование

Циклопропан и его гомологи с алкильными заместителями у трехчленного цикла вступают с галогеноводородами в реакции присоединения с разрывом цикла.

Например, циклопропан присоединяет йодоводород.

Присоединение галогеноводородов к гомологам циклопропана с заместителями у трехатомного цикла (метилциклопропан и др.) происходит по правилу Марковникова.
Например, при присоединении бромоводорода к метилциклопропану преимущественно образуется 2-бромбутан

2. Реакции замещения

В больших циклах (циклопентане, циклогексане) благодаря неплоскому строению молекул не возникает угловое напряжение.

Поэтому большие циклы гораздо более устойчивы, чем малые, и реакции присоединения с разрывом связей С-С для них не характерны. В химических реакциях они ведут себя подобно алканам, вступая в реакции замещения без разрыва кольца.

2.1. Галогенирование

Галогенирование циклопентана, циклогексана и циклоалканов с большим количеством атомов углерода в цикле протекает по механизму радикального замещения.

Например, при хлорировании циклопентана на свету или при нагревании образуется хлорциклопентан

При хлорировании метилциклопентана замещение преимущественно протекает у третичного атома углерода:

2.2. Нитрование циклоалканов

При взаимодействии циклоалканов с разбавленной азотной кислотой при нагревании образуются нитроциклоалканы.

Например, нитрование циклопентана.

2.3. Дегидрирование

При нагревании циклоалканов в присутствии катализаторов протекает дегидрирование – отщепление водорода.

Циклогексан и его производные дегидрируются при нагревании и под действием катализатора до бензола и его производных.

Например, бензол образуется при дегидрировании циклогексана.

Например, при отщеплении водорода от метилциклогексана образуется толуол.

3. Окисление циклоалканов

3.1. Горение

Как и все углеводороды, алканы горят до углекислого газа и воды. Уравнение сгорания циклоалканов в общем виде:

Например, горение циклопентана.

3.2. Окисление

При окислении циклогексана азотной кислотой или в присутствии катализатора образуется адипиновая (гександиовая) кислота:

Получение циклоалканов

1. Дегидрирование алканов

Алканы с длинным углеродным скелетом, содержащие 5 и более атомов углерода в главной цепи, при нагревании в присутствии металлических катализаторов образуют циклические соединения.

При этом протекает дегидроциклизация – процесс отщепления водорода с образованием замкнутого цикла.

Пентан и его гомологи, содержащие пять атомов углерода в главной цепи, при нагревании над платиновым катализатором образуют циклопентан и его гомологи:

Алканы с углеродной цепью, содержащей 6 и более атомов углерода в главной цепи, при дегидрировании образуют устойчивые шестиатомные циклы, т. е. циклогексан и его гомологи, которые далее превращаются в ароматические углеводороды.

Гексан при нагревании в присутствии оксида хрома (III) в зависимости от условий может образовать циклогексан и потом бензол:

Гептан при дегидрировании в присутствии катализатора образует метилциклогексан и далее толуол:

Дегидроциклизация алканов — важный промышленный способ получения циклоалканов.

2. Гидрирование бензола и его гомологов

При гидрировании бензола при нагревании и в присутствии катализатора образуется циклогексан:

При гидрировании толуола образуется метилциклогексан:

Этим способом можно получить только циклогексан и его гомологи с шестичленным кольцом.

3. Дегалогенирование дигалогеналканов

При действии активных металлов на дигалогеналканы, в которых между атомами галогенов находится три и более атомов углерода.

Например, 1,4-дибромбутан реагирует с цинком с образованием циклобутана

Таким образом можно синтезировать циклоалканы заданного строения, в том числе циклоалканы с малыми циклами (С3 и С4).

Источник

Читайте также:  Изготовление вина грузинским способом
Оцените статью
Разные способы