- Хлорид магния: способы получения и химические свойства
- Способ получения
- Качественная реакция
- Химические свойства
- Хлорид магния, характеристика, свойства и получение, химические реакции
- Хлорид магния, характеристика, свойства и получение, химические реакции.
- Краткая характеристика хлорида магния:
- Физические свойства хлорида магния:
- Получение хлорида магния:
- Химические свойства хлорида магния. Химические реакции хлорида магния:
- Применение и использование хлорида магния:
- Хлорид магния — Magnesium chloride
- СОДЕРЖАНИЕ
- Состав, подготовка и общие свойства
- Приложения
- Предшественник металла Mg
- Контроль пыли и эрозии
- Поддержка катализаторов
- Контроль льда
- Питание и медицина
- Кухня
- Садоводство и огородничество
- Вхождение
- Токсикология
- Токсичность растений
- Проблема с паровозным котлом
Хлорид магния: способы получения и химические свойства
Хлорид магния MgCl — соль щелочного металла магния и хлороводородной кислоты. Белый, плавится без разложения. Хорошо растворяется в воде (слабый гидролиз по катиону).
Относительная молекулярная масса Mr = 95,21; относительная плотность для тв. и ж. состояния d = 2,32; tпл = 714º C; tкип = 1370º C;
Способ получения
1. Хлорид магния можно получить путем взаимодействия магния и разбавленной хлороводородной кислоты, образуются хлорид магния и газ водород:
Mg + 2HCl = MgCl2 + H2↑
2. При комнатной температуре, в результате взаимодействия магния и влажного хлора, образуется хлорид магния:
3. Разбавленная хлороводородная кислота реагирует с гидроксидом магния . Взаимодействие хлороводородной кислоты с гидроксидом магния приводит к образованию хлорида магния и воды:
4. Карбонат лития взаимодействует с разбавленной соляной кислотой , образуя хлорид магния, углекислый газ и воду:
5. Оксид магния взаимодействует с разбавленной соляной кислотой , образуя хлорид магния и воду:
MgO + 2HCl = MgCl2 + H2O
6. В результате взаимодействия оксида магния , углерода и хлора при 800 — 1000º С образуется хлорид магния и угарный газ:
MgO + C + Cl2 = MgCl2 + CO
Качественная реакция
Качественная реакция на хлорид магния — взаимодействие его с нитратом серебра, в результате реакции происходит образование белого творожного осадка:
1. При взаимодействии с нитратом серебра , хлорид магния образует нитрат магния и осадок хлорид серебра:
Химические свойства
1. Хлорид магния вступает в реакцию со многими сложными веществами :
1.1. Хлорид магния вступает в реакции с основаниями :
Хлорид магния взаимодействует с разбавленным раствором гидроксида натрия . При этом образуются гидроксид магния и хлорид натрия:
MgCl2 + 2NaOH = Mg(OH)2↓ + 2NaCl
1.2. Насыщенный хлорид магния реагирует с концентрированным и горячим гидратом аммиака, образуя гидроксид магния и хлорид аммония :
Источник
Хлорид магния, характеристика, свойства и получение, химические реакции
Хлорид магния, характеристика, свойства и получение, химические реакции.
Хлорид магния – неорганическое вещество, имеет химическую формулу MgCl2.
Краткая характеристика хлорида магния:
Хлорид магния – неорганическое вещество белого или светло-серого цвета с оттенками от желтоватого до светло-коричневого цвета.
Химическая формула хлорида магния MgCl2.
Хлорид магния – неорганическое химическое соединение, соль соляной кислоты и магния.
Хорошо растворяется в воде, метаноле, этаноле. Мало растворим в ацетоне. Не растворим в жидком аммиаке .
С водой хлорид магния образует кристаллогидраты с общей формулой MgCl2·nH2O, где n может быть 1, 2, 4, 6, 8 и 12: гидрат хлорида магния MgCl2·H2O, дигидрат хлорида магния MgCl2·2H2O, тетрагидрат хлорида магния MgCl2·4H2O, гексагидрат хлорида магния MgCl2·6H2O, октагидрат хлорида магния MgCl2·8H2O, додекагидрат хлорида магния MgCl2·12H2O.
Дигидрат MgCl2·2H2O устойчив в интервале от 181 до 300 °C, тетрагидрат MgCl2·4H2O – от 116,7 до 181 °C, Гексагидрат MgCl2·6H2O – от -3,4 до 116,7 °C, октагидрат MgCl2·8H2O – от -16, 4 до -3,4 °C, додекагидрат MgCl2·12H2O – до -16,4 °C.
Обладает высокой гигроскопичностью.
Хлорид магния и водный раствор хлорида магния в соответствии с ГОСТ 12.1.007 относятся к умеренно опасным веществам (3-й класс опасности). Хлорид магния и водный раствор хлорида магния обладают умеренным раздражающим действием на кожные покровы, слизистые оболочки верхних дыхательных путей и глаз. Сенсибилизирующим и кожно-резорбтивным действием не обладают. Кумулятивная активность не выражена (см. ГОСТ Р 55067-2012 Магний хлористый. Технические условия).
Хлорид магния и его водный раствор не токсичны, не горючи, пожаро- и взрывобезопасны.
Хлорид магния является пищевой добавкой Е511.
В природе хлорид магния встречается в виде минерала бишофита – магниевой соли (MgCl2·6H2O) и минерала карналлита (KCl·MgCl2·6H2O). Еще один природный источник хлорида магния – морская вода . В некоторых соленых озерах концентрация ионов магния даже выше, чем у ионов натрия.
Хлорид магния является основным компонентом «нигари» (яп. 苦汁, дословно «горький сок») – концентрированного солевого раствора – продукта, получаемого после выпаривания глубинных морских вод и выделения из них морской соли. В состав нигари в небольших количествах входит множество других полезных минералов: натрий, калий, кальций, железо, фосфор, цинк и пр.
Физические свойства хлорида магния:
Наименование параметра: | Значение: |
Химическая формула | MgCl2 |
Синонимы и названия иностранном языке | magnesium chloride (англ.) |
магний хлористый (рус.)
хлоромагнезит (рус.)
Получение хлорида магния:
В промышленности хлорид магния получают из минерала бишофита (MgCl2·6H2O) при обезвоживании до дигидрата MgCl2·2H2O, а затем сушат в токе хлороводорода.
Хлорид магния получают в результате следующих химических реакций:
1. обезвоживания гексагидрата хлорида магния (минерала бишофита):
2. взаимодействия оксида магния, углерода и хлора:
3. взаимодействия хлорида железа и магния:
2FeCl3 + 3Mg → 2Fe + 3MgCl2 (t = 300-400 °C).
4. взаимодействия хлорида циркония и магния:
ZrCl4 + 2Mg → 2MgCl2 + Zr (t = 700 °C).
5. взаимодействия хлорида бария и сульфата магния:
6. взаимодействия оксида магния и соляной кислоты.
7. взаимодействия гидроксида магния и соляной кислоты.
Химические свойства хлорида магния. Химические реакции хлорида магния:
Химические свойства хлорида магния аналогичны свойствам хлоридов других металлов . Поэтому для него характерны следующие химические реакции:
- реакция взаимодействия хлорида магния и кислорода:
В результате реакции образуются оксид магния , оксид-дихлорид магния и хлор.
- реакция взаимодействия хлорида магния игидроксида натрия:
В результате реакции образуются хлорид натрия и гидроксид магния . В ходе реакции используется разбавленный раствор гидроксида натрия.
- реакция взаимодействия хлорида магния и гидроксида кальция :
В результате реакции образуются хлорид кальция и гидроксид магния . В ходе реакции используется насыщенный раствор гидроксида натрия.
- реакция взаимодействия хлорида магния, карбоната натрия и воды:
В результате реакции образуются дигидроксид-карбонат магния, оксид углерода (IV) и хлорид натрия.
- реакция взаимодействия хлорида магния, хлорида калия и воды:
В результате реакции образуется гексагидрат хлорида магния-калия. В ходе реакции используется насыщенные растворы хлорида магния и хлорида калия.
- реакция взаимодействия хлорида магния и ортофосфата лития:
В результате реакции образуются хлорид лития и ортофосфат магния.
- реакция взаимодействия хлорида магния и ортофосфата калия:
В результате реакции образуются ортофосфат кальция и хлорид калия.
- реакция взаимодействия хлорида магния и ортофосфата натрия:
В результате реакции образуются ортофосфат кальция и хлорид натрия.
- реакция взаимодействия хлорида магния и нитрата серебра:
В результате реакции образуются нитрат магния и хлорид серебра .
- реакция взаимодействия хлорида магния и фторида калия:
В результате реакции образуются фторид магния-калия и хлорид калия . Реакция протекает при спекании.
- реакция электролиза хлорида магния:
В результате реакции образуются магний и хлор .
- реакция термического разложения гексагидрата хлорида магния:
В результате реакции образуются хлорид магния и вода . Реакция протекает в токе хлороводорода.
Применение и использование хлорида магния:
Хлорид магния используется во множестве отраслей промышленности и для бытовых нужд:
– в металлургии при производстве металлического магния;
– в производстве строительных материалов для получения магнезиальных цементов;
– в органическом синтезе полиолефинов в качестве носителя катализатора;
– в качестве антиобледенительного вещества при обработке автомобильных дорог, тротуаров и пр.;
– в ходе добычи каменного угля для связывания пыли (в целях взрывозащиты);
– в пищевой промышленности в качестве пищевой добавки Е511 как отвердитель, регулятор кислотности, укрепляющий агент, усилитель вкуса. Используется для производства тофу, так называемого соевого творога – пищевого продукта из соевых бобов, богатый белком;
– в сельском хозяйстве для подкормки растений в качестве замены сульфата магния.
Источник
Хлорид магния — Magnesium chloride
Имена | |
---|---|
Другие имена |
- 7786-30-3
Y
- 7791-18-6 (гексагидрат)
Y
- ЧЕБИ: 6636
Y
- ChEMBL1200547
N
- 22987
Y
- 59XN63C8VM
Y
- 02F3473H9O (гексагидрат)
Y
203,31 г / моль (гексагидрат)
1,569 г / см 3 (гексагидрат)
при быстром нагревании: медленное нагревание приводит к разложению с 300 ° C (572 ° F, 573 K)
52,9 г / 100 мл (0 ° C)
54,3 г / 100 мл (20 ° C)
72,6 г / 100 мл (100 ° C) гексагидрат
235 г / 100 мл (20 ° C)
1,569 (гексагидрат)
Хлорид магния — это название химического соединения с формулой MgCl 2 и его различных гидратов MgCl 2 (H 2 O) x . Безводный MgCl 2 содержит 25,5% элементарного магния по массе. Эти соли являются типичными ионными галогенидами , хорошо растворимыми в воде. Гидратированный хлорид магния можно экстрагировать из рассола или морской воды . В Северной Америке хлорид магния производится в основном из рассола Большого Соленого озера . Он добывается аналогичным способом из Мертвого моря в долине реки Иордан . Хлорид магния, как природный минерал бишофит , также добывается (путем добычи раствора) из древних морских глубин , например, морского дна Цехштейна на северо-западе Европы. Некоторое количество хлорида магния получается из солнечного испарения морской воды. Безводный хлорид магния является основным предшественником металлического магния, который производится в больших масштабах. Наиболее доступной формой является гидратированный хлорид магния.
СОДЕРЖАНИЕ
Состав, подготовка и общие свойства
MgCl 2 кристаллизуется в мотиве хлорида кадмия , который имеет октаэдрические центры Mg. Известно несколько гидратов с формулой MgCl 2 (H 2 O) x , и каждый из них теряет воду при более высоких температурах: x = 12 (-16,4 ° C), 8 (-3,4 ° C), 6 (116,7 ° C), 4. (181 ° C), 2 (около 300 ° C). В гексагидрате Mg 2+ также октаэдрический , но координирован с шестью водными лигандами . Термическая дегидратация гидратов MgCl 2 (H 2 O) x ( x = 6, 12) не происходит напрямую. Безводный MgCl 2 получают в промышленных масштабах путем нагревания хлоридной соли гексамминного комплекса [Mg (NH 3 ) 6 ] 2+ .
Судя по существованию некоторых гидратов, безводный MgCl 2 является кислотой Льюиса , хотя и слабой.
В процессе Dow хлорид магния регенерируют из гидроксида магния с помощью соляной кислоты :
Его также можно получить из карбоната магния по аналогичной реакции.
Производные с тетраэдрическим Mg 2+ встречаются реже. Примеры включают соли ( N (C 2 H 5 ) 4 ) 2 MgCl 4 и аддукты, такие как MgCl 2 ( TMEDA ).
Приложения
Предшественник металла Mg
Безводный MgCl 2 является основным предшественником металлического магния. Восстановление Mg 2+ до металлического Mg 0 осуществляется электролизом в солевом расплаве . Как и в случае алюминия , электролиз в водном растворе невозможен, поскольку образовавшийся металлический магний немедленно вступит в реакцию с водой, или, другими словами, водный H + будет восстанавливаться до газообразного H 2 до того, как может произойти восстановление Mg. Таким образом, прямой электролиз расплавленного MgCl 2 в отсутствие воды необходим, потому что потенциал восстановления для получения Mg ниже, чем область стабильности воды на диаграмме E h –pH ( диаграмма Пурбе ).
Производство металлического магния на катоде (реакция восстановления) сопровождается окислением хлорид-анионов на аноде с выделением газообразного хлора . Этот процесс получил широкое распространение в промышленных масштабах.
Контроль пыли и эрозии
Хлорид магния — одно из многих веществ, используемых для борьбы с пылью, стабилизации почвы и уменьшения ветровой эрозии . При нанесении хлорида магния на дороги и участки с обнаженной почвой возникают как положительные, так и отрицательные проблемы с производительностью, которые связаны со многими факторами применения.
Поддержка катализаторов
Катализаторы Циглера-Натта , коммерчески используемые для производства полиолефинов , содержат MgCl 2 в качестве носителя катализатора . Введение носителей MgCl 2 увеличивает активность традиционных катализаторов и позволило разработать высокостереоспецифические катализаторы для производства полипропилена .
Контроль льда
Хлорид магния используется для низкотемпературной защиты от обледенения шоссе , тротуаров и парковок . Когда дороги опасны из-за гололеда, хлорид магния помогает предотвратить прилипание льда к тротуару, позволяя снегоочистителям более эффективно расчищать дороги.
Хлорид магния используется для борьбы с обледенением дорожного покрытия тремя способами: защита от обледенения, когда специалисты по техническому обслуживанию разбрасывают его по дорогам перед снежной бурей, чтобы предотвратить налипание снега и образование льда; предварительное увлажнение, что означает, что жидкий состав хлорида магния распыляется непосредственно на соль, когда она распределяется по дорожному покрытию, смачивая соль, так что она прилипает к дороге; и предварительная обработка, когда хлорид магния и соль смешиваются вместе перед загрузкой на грузовики и распространением по дорогам с твердым покрытием. Хлорид кальция повреждает бетон в два раза быстрее, чем хлорид магния. Следует отметить, что количество хлорида магния должно контролироваться, когда он используется для защиты от обледенения, поскольку он может вызвать загрязнение окружающей среды.
Питание и медицина
Кухня
Хлорид магния ( E511 ) — важный коагулянт, используемый при приготовлении тофу из соевого молока .
В Японии он продается как нигари (に が り, производное от японского слова «горький»), белый порошок, получаемый из морской воды после удаления хлорида натрия и испарения воды. В Китае это называется лушуй (卤水).
Нигари или Иушуи на самом деле является природным хлоридом магния, что означает, что он не полностью очищен (он содержит до 5% сульфата магния и различные минералы). Кристаллы происходят из озер китайской провинции Цинхай , а затем переработаны в Японии. Миллионы лет назад этот регион был домом для древнего океана, который постепенно высыхал и от которого сегодня остались только соленые озера с солоноватой водой, насыщенной солью, где кристаллизуется хлорид магния.
Это недорогая пищевая добавка, содержащая магний, поэтому она интересна ввиду общего дефицита в нашем текущем потреблении (чтобы быть полностью здоровым, человеческое тело должно, в частности, извлечь выгоду из баланса между кальцием и магнием ). Он также входит в состав детских смесей.
Садоводство и огородничество
Поскольку магний является мобильным питательным веществом, хлорид магния можно эффективно использовать вместо сульфата магния (английской соли), чтобы помочь устранить дефицит магния в растениях посредством внекорневой подкормки . Рекомендуемая доза хлорида магния меньше рекомендуемой дозы сульфата магния (20 г / л). Это связано в первую очередь с хлором, присутствующим в хлориде магния, который может легко достичь токсичного уровня при чрезмерном применении или слишком частом применении.
Было обнаружено, что более высокие концентрации магния в томатах и некоторых растениях перца могут сделать их более восприимчивыми к болезням, вызванным инфекцией бактерии Xanthomonas campestris , поскольку магний необходим для роста бактерий.
Вхождение
Содержание магния в естественной морской воде составляет от 1250 до 1350 мг / л, что составляет около 3,7% от общего содержания минералов в морской воде. Минералы Мертвого моря содержат значительно более высокое содержание хлорида магния — 50,8%. Карбонаты и кальций необходимы для роста кораллов , коралловых водорослей , моллюсков и беспозвоночных . Истощение магния может вызывать мангровые заросли и чрезмерное использование известковой воды, а также превышение естественных значений кальция, щелочности и pH . Наиболее распространенной минеральной формой хлорида магния является его гексагидрат, бишофит. Безводное соединение встречается очень редко, например, хлормагнезит. Хлорид-гидроксиды магния, коршуновскит и непскоит также очень редки.
Токсикология
Ионы магния горькие на вкус, а растворы хлорида магния горькие в разной степени, в зависимости от концентрации магния.
Магний токсичность солей магния редко встречается у здоровых людей с нормальной диетой, потому что избыток магний легко выводится из организма в моче с помощью почек . Было описано несколько случаев перорального отравления магнием у людей с нормальной функцией почек, принимающих большое количество солей магния, но это случается редко. Если съесть большое количество хлорида магния, он будет иметь эффекты, подобные сульфату магния , вызывая диарею, хотя сульфат также способствует слабительному эффекту сульфата магния, поэтому эффект от хлорида не такой серьезный.
Токсичность растений
Хлорид (Cl — ) и магний (Mg 2+ ) являются важными питательными веществами, важными для нормального роста растений. Слишком большое количество любого из питательных веществ может нанести вред растению, хотя концентрация хлорида в листве более сильно связана с повреждением листвы, чем магний. Высокие концентрации ионов MgCl 2 в почве могут быть токсичными или изменять водные отношения, так что растение не может легко накапливать воду и питательные вещества. Попав внутрь растения, хлорид перемещается по водопроводящей системе и накапливается на краях листьев или хвои, где в первую очередь происходит отмирание. Листья ослабевают или погибают, что может привести к гибели дерева.
Проблема с паровозным котлом
Присутствие растворенного хлорида магния в колодезной воде ( отверстия воды ) , используемом в локомотивных котлах на Транс-австралийской железной дороге вызвало серьезные и дорогостоящие проблемы технического обслуживания в паровой эпохе. Ни в одной точке своего маршрута линия не пересекает постоянный пресноводный водоток, поэтому приходилось полагаться на воду из скважин. Недорогое средство для очистки высокоминерализованной воды отсутствовало, а срок службы паровозных котлов составлял менее четверти времени, чем обычно предполагалось. Во времена паровозов около половины всей загрузки поезда составляла вода для двигателя. Оператор линии, Commonwealth Railways , одним из первых освоил дизель-электрический локомотив .
Источник