Получить этен всеми возможными способами

Содержание
  1. Получить этен всеми возможными способами
  2. Характеристики и физические свойства этена
  3. Получение этена
  4. Химические свойства этена
  5. Применение этена
  6. Примеры решения задач
  7. Этан: способы получения и свойства
  8. Гомологический ряд этана
  9. Строение этана
  10. Изомерия этана
  11. Химические свойства этана
  12. 1. Реакции замещения
  13. 1.1. Галогенирование
  14. 1.2. Нитрование этана
  15. 2. Дегидрирование этана
  16. 3. Окисление этана
  17. 3.1. Полное окисление – горение
  18. Получение этана
  19. 1. Взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)
  20. 2. Декарбоксилирование солей карбоновых кислот (реакция Дюма)
  21. 3. Гидрирование алкенов и алкинов
  22. 4. Синтез Фишера-Тропша
  23. 5. Получение этана в промышленности
  24. Этилен (этен), получение, свойства, химические реакции
  25. Этилен (этен), получение, свойства, химические реакции.
  26. Этилен (этен), формула, газ, характеристики:
  27. Физические свойства этилена (этена):
  28. Химические свойства этилена (этена):
  29. Получение этилена (этена). Химические реакции – уравнения получения этилена (этена):
  30. Применение и использование этилена (этена):

Получить этен всеми возможными способами

На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Не можете решить контрольную?!
Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

Характеристики и физические свойства этена

Этен (этилен) – бесцветный горючий газ (строение молекулы показано на рис. 1), обладающий слабым запахом. Мало растворим в воде. Хорошо растворяется в диэтиловом эфире и углеводородах.

Рис. 1. Строение молекулы этилена.

Таблица 1. Физические свойства этена.

Молярная масса, г/моль

Плотность, г/см 3

Температура плавления, o С

Температура кипения, o С

Получение этена

В промышленных объемах этен получают при переработке нефти: крекингом и дегидрированием этана. Лабораторные способы получения этилена представлены

— неполное гидрирование ацетилена

Химические свойства этена

Этен весьма реакционноспособоное соединение. Все химические превращения этилена протекают с расщеплением:

  1. p-связи С-С (присоединение, полимеризация и окисление)
  • гидрирование

Применение этена

Основное направление использование этилена — промышленный органический синтез таких соединений как галогенопроизводные, спирты (этанол, этиленгликоль), уксусный альдегид, уксусная кислота и др. Кроме этого данное соединение в производстве полимеров.

Примеры решения задач

Задание В результате присоединения йода к этилену получено 98,7 г иодопроизводного. Рассчитайте массу и количество вещества этилена, взятого для реакции.
Решение Запишем уравнение реакции присоединения йода к этилену:

В результате реакции образовалось иодопроизводное – дийодэтан. Рассчитаем его количество вещества (молярная масса равна – 282 г/моль):

Согласно уравнению реакции n(C2H4I2) : n(C2H4) = 1:1, т.е. n(C2H4I2) = n(C2H4) = 0,35 моль. Тогда масса этилена будет равна (молярная масса – 28 г/моль):

Ответ Масса этилена равна 9,8 г, количество вещества этилена равно 0,35 моль.
Задание Рассчитайте объем этилена, приведенный к нормальным условиям, который можно получить из технического этилового спирта C2H5OH массой 300 г. Учтите, что технический спирт содержит примеси, массовая доля которых равна 8%.
Решение Запишем уравнение реакции получения этилена из этилового спирта:

Найдем массу чистого (без примесей) этилового спирта. Для этого сначала рассчитаем его массовую долю:

Определим количество вещества этилового спирта (молярная масса – 46 г/моль):

Согласноуравнениюреакцииn(C2H5OH) : n(C2H4) = 1:1, т.е. n(C2H5OH) = n(C2H4) = 3,83 моль. Тогда объем этилена будет равен:

Источник

Этан: способы получения и свойства

Этан C2H6 – это предельный углеводород, содержащий два атома углерода в углеродной цепи. Бесцветный газ без вкуса и запаха, нерастворим в воде и не смешивается с ней.

Гомологический ряд этана

Все алканы — вещества, схожие по физическим и химическим свойствам, и отличающиеся на одну или несколько групп –СН2– друг от друга. Такие вещества называются гомологами, а ряд веществ, являющихся гомологами, называют гомологическим рядом.

Самый первый представитель гомологического ряда алканов – метан CH4. , или Н–СH2–H.

Продолжить гомологический ряд можно, последовательно добавляя группу –СН2– в углеводородную цепь алкана.

Название алкана Формула алкана
Метан CH4
Этан C2H6
Пропан C3H8
Бутан C4H10
Пентан C5H12
Гексан C6H14
Гептан C7H16
Октан C8H18
Нонан C9H20
Декан C10H22

Общая формула гомологического ряда алканов CnH2n+2.

Первые четыре члена гомологического ряда алканов – газы, C5–C17 – жидкости, начиная с C18 – твердые вещества.

Строение этана

В молекулах алканов встречаются химические связи C–H и С–С.

Связь C–H ковалентная слабополярная, связь С–С – ковалентная неполярная. Это одинарные σ-связи. Атомы углерода в алканах образуют по четыре σ-связи. Следовательно, гибридизация атомов углерода в молекулах алканов – sp 3 :

При образовании связи С–С происходит перекрывание sp 3 -гибридных орбиталей атомов углерода:

При образовании связи С–H происходит перекрывание sp 3 -гибридной орбитали атома углерода и s-орбитали атома водорода:

Четыре sp 3 -гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому четыре гибридные орбитали углерода в алканах направлены в пространстве под углом 109 о 28′ друг к другу:

Это соответствует тетраэдрическому строению молекулы.

Например, в молекуле этана C2H6 атомы водорода располагаются в пространстве в вершинах двух тетраэдров, центрами которых являются атомы углерода

Изомерия этана

Для этана не характерно наличие изомеров – ни структурных (изомерия углеродного скелета, положения заместителей), ни пространственных.

Химические свойства этана

Этан – предельный углеводород, поэтому он не может вступать в реакции присоединения.

Для метана характерны реакции:

Разрыв слабо-полярных связей С – Н протекает только по гомолитическому механизму с образованием свободных радикалов.

Поэтому для этана характерны радикальные реакции.

Этан устойчив к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагирует с концентрированными кислотами, щелочами, бромной водой.

1. Реакции замещения

В молекулах алканов связи С–Н более доступны для атаки другими частицами, чем менее прочные связи С–С.

1.1. Галогенирование

Этан реагирует с хлором и бромом на свету или при нагревании.

При хлорировании этана сначала образуется хлорэтан:

Хлорэтан может взаимодействовать с хлором и дальше с образованием дихлорэтана, трихлорэтана, тетрахлорметана и т.д.

1.2. Нитрование этана

Этан взаимодействует с разбавленной азотной кислотой по радикальному механизму, при нагревании и под давлением. Атом водорода в этане замещается на нитрогруппу NO2.

Например. При нитровании этана образуется преимущественно нитроэтан:

2. Дегидрирование этана

Дегидрирование – это реакция отщепления атомов водорода.

В качестве катализаторов дегидрирования используют никель Ni, платину Pt, палладий Pd, оксиды хрома (III), железа (III), цинка и др.

При дегидрировании алканов, содержащих от 2 до 4 атомов углерода в молекуле, разрываются связи С–Н у соседних атомов углерода и образуются двойные и тройные связи.

Например, п ри дегидрировании этана образуются этилен или ацетилен:

3. Окисление этана

Этан – слабополярное соединение, поэтому при обычных условиях он не окисляется даже сильными окислителями (перманганат калия, хромат или дихромат калия и др.).

3.1. Полное окисление – горение

Этан горит с образованием углекислого газа и воды. Реакция горения этана сопровождается выделением большого количества теплоты.

Уравнение сгорания алканов в общем виде:

При горении этана в недостатке кислорода может образоваться угарный газ СО или сажа С.

Получение этана

1. Взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)

Это один из лабораторных способов получения этана из хлорметана или бромметана. При этом происходит удвоение углеродного скелета.

Например , хлорметан реагирует с натрием с образованием этана:

2. Декарбоксилирование солей карбоновых кислот (реакция Дюма)

Реакция Дюма — это взаимодействие солей карбоновых кислот с щелочами при сплавлении.

R–COONa + NaOH R–H + Na2CO3

Декарбоксилирование — это отщепление (элиминирование) молекулы углекислого газа из карбоксильной группы (-COOH) или органической кислоты или карбоксилатной группы (-COOMe) соли органической кислоты.

При взаимодействии пропионата натрия с гидроксидом натрия при сплавлении образуется этан и карбонат натрия:

CH3–CH2 –COONa + NaOH CH3–CH2 –H + Na2CO3

3. Гидрирование алкенов и алкинов

Этан можно получить из этилена или ацетилена:

При гидрировании этилена образуется этан:

При полном гидрировании ацетилена также образуется этан:

4. Синтез Фишера-Тропша

Из синтез-газа (смесь угарного газа и водорода) при определенных условиях (катализатор, температура и давление) можно получить различные углеводороды:

Это промышленный процесс получения алканов.

Синтезом Фишера-Тропша можно получить этан:

5. Получение этана в промышленности

В промышленности этан получают из нефти, каменного угля, природного и попутного газа . При переработке нефти используют ректификацию, крекинг и другие способы.

Источник

Этилен (этен), получение, свойства, химические реакции

Этилен (этен), получение, свойства, химические реакции.

Этилен (этен), C2H4 – органическое вещество класса алкенов. Этилен имеет двойную углерод-углеродную связь и поэтому относится к ненасыщенным или непредельным углеводородам.

Этилен (этен), формула, газ, характеристики:

Этилен (этен) – органическое вещество класса алкенов, состоящий из двух атомов углерода и четырех атомов водорода . Этилен имеет двойную углерод -углеродную связь и поэтому относится к ненасыщенным или непредельным углеводородам.

Химическая формула этилена C2H4, рациональная формула H2CCH2, структурная формула CH2=CH2. Изомеров не имеет.

Этилен – бесцветный газ, без вкуса, со слабым запахом. Легче воздуха.

Этилен является фитогормоном, т.е. низкомолекулярным органическим веществом, вырабатываемым растениями и имеющим регуляторные функции. Он образуется в тканях самого растения и выполняет в жизненном цикле растений многообразные функции, среди которых контроль развития проростка, созревание плодов (в частности, фруктов ), распускание бутонов (процесс цветения), старение и опадание листьев и цветков, участие в реакции растений на биотический и абиотический стресс, коммуникации между разными органами растений и между растениями в популяции.

Пожаро- и взрывоопасен.

Плохо растворяется в воде . Зато хорошо растворяется в диэтиловом эфире и углеводородах.

Этилен по токсикологической характеристике относится к веществам 4-го класса опасности (малоопасным веществам) по ГОСТ 12.1.007.

Этилен — самое производимое органическое соединение в мире.

Физические свойства этилена (этена):

Наименование параметра: Значение:
Цвет без цвета
Запах со слабым запахом
Вкус без вкуса
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) газ
Плотность (при 20 °C и атмосферном давлении 1 атм.), кг/м 3 1,178
Плотность (при 0 °C и атмосферном давлении 1 атм.), кг/м 3 1,26
Температура плавления, °C -169,2
Температура кипения, °C -103,7
Температура вспышки, °C 136,1
Температура самовоспламенения, °C 475,6
Критическая температура*, °C 9,6
Критическое давление, МПа 5,033
Взрывоопасные концентрации смеси газа с воздухом, % объёмных от 2,75 до 36,35
Удельная теплота сгорания, МДж/кг 46,988
Коэффициент теплопроводности (при 0 °C и атмосферном давлении 1 атм.), Вт/(м·К) 0,0163
Коэффициент теплопроводности (при 50 °C и атмосферном давлении 1 атм.), Вт/(м·К) 0,0209
Молярная масса, г/моль 28,05

* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.

Химические свойства этилена (этена):

Этилен — химически активное вещество. Так как в молекуле между атомами углерода имеется двойная связь, то одна из них, менее прочная, легко разрывается, и по месту разрыва связи происходит присоединение, замещение, окисление, полимеризация молекул.

Химические свойства этилена аналогичны свойствам других представителей ряда алкенов. Поэтому для него характерны следующие химические реакции:

  1. 1. каталитическое гидрирование(восстановление)этилена:
  1. 2. галогенирование этилена:

Однако при нагревании этилена до температуры 300 o C разрыва двойной углерод-углеродной связи не происходит – реакция галогенирования протекает по механизму радикального замещения:

  1. 3. гидрогалогенирование этилена:
  1. 4. гидратация этилена:

Реакция происходит в присутствии минеральных кислот (серной, фосфорной). В результате данной химической реакции образуется этанол.

  1. 5. окисление этилена:

Этилен легко окисляется. В зависимости от условий проведения реакции окисления этилена могут быть получены различные вещества: многоатомные спирты, эпоксиды или альдегиды.

В результате образуется эпоксид.

В результате образуется ацетальдегид.

  1. 6. горение этилена:

В результате горения этилена происходит разрыв всех связей в молекуле, а продуктами реакции являются углекислый газ и вода .

  1. 7. полимеризация этилена:

Получение этилена (этена). Химические реакции – уравнения получения этилена (этена):

Этилен получают как в лабораторных условиях, так и в промышленных масштабах.

В промышленных масштабах этилен получается в результате следующей химической реакции:

  1. 1. каталитическое дегидрирование этана :

Этилен в лабораторных условиях получается в результате следующих химических реакций:

  1. 2. дегалогенирования дигалогенпроизводных этана:
  1. 3. неполное гидрирование ацетилена:
  1. 4. дегидрогалогенирование галогенпроизводных алканов под действием спиртовых растворов щелочей:

Применение и использование этилена (этена):

– как сырье в химической промышленности для органического синтеза различных органических соединений: галогенпроизводных, спиртов (этанола, этиленгликоля), винилацетата, дихлорэтан, винилхлорида, окиси этилена, полиэтилена , стирола, уксусной кислоты, этилбензола, этиленгликоля и пр.,

Примечание: © Фото //www.pexels.com, //pixabay.com

как получить этилен реакция ацетилен этен 1 2 вещество этилен кислород водород связь является углекислый газ бромная вода
уравнение реакции масса объем полное сгорание моль молекула смесь превращение горение получение этилена
напишите уравнение реакций этилен

Источник

Читайте также:  Способ получения перегретого пара
Оцените статью
Разные способы