Урок №56. Цинк
ЦИНК И ЕГО СОЕДИНЕНИЯ
СТРОЕНИЕ АТОМА
Цинк – элемент IIБ подгруппы четвертого периода. Цинк относится к семейству d-элементов, поскольку электронное строение цинка отражается конфигурацией.
Конфигурация 3d 10 является устойчивой, и в образовании химической связи участвуют лишь внешние электроны 4s — подуровня, поэтому характерная степень окисления цинка- (+2).
Нахождение в природе
В природе встречается только в виде соединений, важнейшим из которых является цинковая обманка — сульфид цинка ZnS — сфалерит .
Цинковую обманку считают первичным минералом, из которого образовались другие минералы цинка:
§ смитсонит ZnCO 3
§ каламин 2ZnO · SiO 2 · Н 2 O
В организме взрослого человека содержится в среднем около 2 г цинка, в виде его соединений, который концентрируется преимущественно в простате, мышцах, печени и поджелудочной железе.
Недостаток цинка в организме приводит к ряду расстройств — раздражительность, утомляемость, потеря памяти, депрессивные состояния, снижение остроты зрения, уменьшение массы тела, снижение уровня инсулина, аллергические заболевания, анемия и др.
ЦИНК
СФАЛЕРИТ
Способы получения
Цинк получают из сульфидной руды. Сульфид цинка обжигают в печи кипящего слоя:
Чистый цинк из оксида получают двумя способами.
При пирометаллургическом способе оксид цинка восстанавливают углём или коксом при 1200—1300 °C:
В настоящее время основной способ получения цинка — электролитический (гидрометаллургический) .
Получаемый раствор сульфата цинка очищают от примесей (осаждением их цинковой пылью) и подвергают электролизу. При электролизе чистый цинк осаждается на алюминиевых катодах, с которых его удаляют и подвергают плавлению в индукционных печах. Таким образом можно получить цинк с высокой чистотой (до 99,95 %).
Качественные реакции
Качественная реакция на ионы цинка — взаимодействие избытка солей цинка с щелочами . При этом образуется белый осадок гидроксида цинка .
При дальнейшем добавлении избытка щелочи амфотерный гидроксид цинка растворяется с образованием комплексной соли тетрагидроксоцинката :
Если поместить соль цинка в избыток раствора щелочи , то белый осадок гидроксида цинка не образуется, т.к. в избытке щелочи соединения цинка сразу переходят в комплекс :
Химические свойства
Цинк — химически активный металл, обладает выраженными восстановительными свойствами, по активности уступает щелочно-земельным металлам. Проявляет амфотерные свойства. Так же как и хром, используется для нанесения антикоррозионных покрытий («цинкование» кузова автомобиля).
1. Взаимодействие с простыми веществами — неметаллами ( цинк не взаимодействует с водородом, азотом, бором, кремнием, углеродом )
2. Цинк взаимодействует со сложными веществами:
§ с парами воды при температуре красного каления с образованием оксида цинка и водорода:
§ с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой и др.).
§ Цинк реагирует с концентрированной серной кислотой . При нагревании в зависимости от условий возможно образование различных продуктов.
§ Аналогично: при нагревании с азотной кислотой образуются различные продукты в зависимости о концентрации кислоты – N 2 O, N 2 и др. :
Цинк – амфотерный металл, он взаимодействует со щелочами . При взаимодействии алюминия с раствором щелочи образуется тетрагидроксоалюминат и водород :
Цинк реагирует с расплавом щелочи с образованием цинката и водорода :
С газообразным аммиаком при 550–600°С образует нитрид цинка:
растворяется в водном растворе аммиака, образуя гидроксид тетраамминцинка:
Цинк вытесняет менее активные металлы из оксидов и солей .
Zn + CuO → Cu + ZnO
Восстановительные свойства с сильными окислителями: нитратами и сульфитами в щелочной среде, перманганатами , соединениями хрома (VI):
Оксид цинка
Способы получения
1. Окислением цинка кислородом:
2. Разложением гидроксида цинка при нагревании:
3. Оксид цинка можно получить разложением нитрата цинка:
Химические свойства
Оксид цинка — типичный амфотерный оксид . Взаимодействует с кислотными и основными оксидами, кислотами, щелочами.
1. При взаимодействии оксида цинка с основными оксидами образуются соли — цинкаты .
2. Оксид цинка взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются соли — цинкаты, а в растворе – комплексные соли . При этом оксид цинка проявляет кислотные свойства .
Оксид цинка растворяется в избытке раствора щелочи с образованием тетрагидроксоцинката :
3. Оксид цинка не взаимодействует с водой.
4. Оксид цинка взаимодействует с кислотными оксидами . При этом образуются соли цинка. В этих реакциях оксид цинка проявляет основные свойства .
5. Оксид цинка взаимодействует с растворимыми кислотами с образованием солей .
6. Оксид цинка проявляет слабые окислительные свойства .
7. Оксид цинка — твердый, нелетучий. А следовательно, он вытесняет более летучие оксиды (как правило, углекислый газ) из солей при сплавлении.
Гидроксид цинка
Способы получения
1. Гидроксид цинка можно получить пропусканием углекислого газа , сернистого газа или сероводорода через раствор тетрагидроксоцинката натрия:
2. Гидроксид цинка можно получить действием недостатка щелочи на избыток соли цинка .
Химические свойства
1. Гидроксид цинка реагирует с растворимыми кислотами .
2. Гидроксид цинка взаимодействует с кислотными оксидами .
3. Гидроксид цинка взаимодействует с растворимыми основаниями (щелочами).
В расплаве образуются соли — цинкаты:
Гидроксид цинка растворяется в избытке щелочи с образованием тетрагидроксоцинката :
4. Гидроксид цинка разлагается при нагревании:
Соли цинка
Нитрат и сульфат цинка
Нитрат цинка при нагревании разлагается на оксид цинка , оксид азота (IV) и кислород :
Сульфат цинка при сильном нагревании разлагается аналогично — на оксид цинка , сернистый газ и кислород :
Комплексные соли цинка
§ с кислотными оксидами
§ Под действием избытка сильной кислоты осадок не выпадает, т.к. амфотерный гидроксид цинка реагирует с сильными кислотами.
§ Под действием небольшого количества ( недостатка ) сильной кислоты осадок все-таки выпадет, для растворения гидроксида цинка кислоты не будет хватать:
§ Аналогично с недостатком азотной кислоты выпадает гидроксид цинка:
§ Если выпарить воду из раствора комплексной соли и нагреть образующееся вещество, то останется обычная соль-цинкат:
Цинкаты
Соли, в которых цинк образует кислотный остаток (цинкаты) — образуются из оксида цинка при сплавлении с щелочами и основными оксидами:
§ цинкаты реагируют с кислотами с образованием солей цинка :
§ под действием избытка воды цинкаты переходят в комплексные соли:
Сульфид цинка
Сульфид цинка — так называемый «белый сульфид». В воде сульфид цинка нерастворим, зато минеральные кислоты вытесняют из сульфида цинка сероводород (например, соляная кислота):
Под действием азотной кислоты сульфид цинка окисляется до сульфата:
(в продуктах также можно записать нитрат цинка и серную кислоту).
Концентрированная серная кислота также окисляет сульфид цинка:
При окислении сульфида цинка сильными окислителями в щелочной среде образуется комплексная соль:
Источник
Соли цинка
Соли цинка
Нитрат и сульфат цинка
Нитрат цинка при нагревании разлагается на оксид цинка, оксид азота (IV) и кислород:
Сульфат цинка при сильном нагревании разлагается аналогично — на оксид цинка, сернистый газ и кислород:
Комплексные соли цинка
Для описания свойств комплексных солей цинка — гидроксоцинкатов, удобно использоваться следующий прием: мысленно разбейте тетрагидроксоцинкат на две отдельные частицы — гидроксид цинка и гидроксид щелочного металла.
Например , тетрагидроксоцинкат натрия разбиваем на гидроксид цинка и гидроксид натрия:
Na2[Zn(OH)4] разбиваем на NaOH и Zn(OH)2
Свойства всего комплекса можно определять, как свойства этих отдельных соединений.
Таким образом, гидроксокомплексы цинка реагируют с кислотными оксидами .
Например , гидроксокомплекс разрушается под действием избытка углекислого газа. При этом с СО2 реагирует NaOH с образованием кислой соли (при избытке СО2), а амфотерный гидроксид цинка не реагирует с углекислым газом, следовательно, просто выпадает в осадок:
Аналогично тетрагидроксоцинкат калия реагирует с углекислым газом:
А вот под действием избытка сильной кислоты осадок не выпадает, т.к. амфотерный гидроксид цинка реагирует с сильными кислотами.
Например , с соляной кислотой:
Правда, под действием небольшого количества ( недостатка ) сильной кислоты осадок все-таки выпадет, для растворения гидроксида цинка кислоты не будет хватать:
Аналогично с недостатком азотной кислоты выпадает гидроксид цинка:
Если выпарить воду из раствора комплексной соли и нагреть образующееся вещество, то останется обычная соль-цинкат:
Гидролиз солей цинка
Растворимые соли цинка и сильных кислот гидролизуются по катиону. Гидролиз протекает ступенчато и обратимо, т.е. чуть-чуть:
I ступень: Zn 2+ + H2O = ZnOH + + H +
II ступень: ZnOH + + H2O = Zn(OH )2 + H +
Более подробно про гидролиз можно прочитать в соответствующей статье.
Цинкаты
Соли, в которых цинк образует кислотный остаток (цинкаты) — образуются из оксида цинка при сплавлении с щелочами и основными оксидами:
Для понимания свойств цинкатов их также можно мысленно разбить на два отдельных вещества.
Например, цинкат натрия мы разделим мысленно на два вещества: оксид цинка и оксид натрия.
Na2ZnO2 разбиваем на Na2O и ZnO
Тогда нам станет очевидно, что цинкаты реагируют с кислотами с образованием солей цинка :
Под действием избытка воды цинкаты переходят в комплексные соли:
Сульфид цинка
Сульфид цинка — так называемый «белый сульфид». В воде сульфид цинка нерастворим, зато минеральные кислоты вытесняют из сульфида цинка сероводород (например, соляная кислота):
ZnS + 2HCl → ZnCl2 + H2S
Под действием азотной кислоты сульфид цинка окисляется до сульфата:
(в продуктах также можно записать нитрат цинка и серную кислоту).
Концентрированная серная кислота также окисляет сульфид цинка:
При окислении сульфида цинка сильными окислителями в щелочной среде образуется комплексная соль:
ZnS + 4NaOH + Br2 = Na2[Zn(OH)4] + S + 2NaBr
Источник
Сульфат цинка
Агрохимикаты
Макроэлементы, % | ||||||
N | P | K | Ca | Mg | S | Fe |
— | — | — | — | — | — | — |
Микроэлементы, % | ||||||||
Ag | B | Mo | Mn | Cu | Zn | Co | I | V |
— | — | — | — | — | — | — | — | — |
Содержание:
Физические и химические свойства
Сульфат цинка – бесцветные кристаллы с химической формулой ZnSO4.
Физические характеристики
- Плотность – 3,54 г/см 3 .
- При нагревании до 600–800°C разлагается до оксида серы SO3 и оксосульфатов.
- При температуре выше 930°C образует оксид цинка (ZnO). Хорошо растворим в воде и глицерине.
- Растворимость в воде зависит от температуры:
- при–7 °C в воде растворяется 27,6 % отмассы вещества,
- при +39 °C – 41,4 %.
В этом же интервале происходит кристаллизация гептагидрата сульфата цинка (цинкового купороса). При температуре 39–70 °C кристаллизуется гексагидрат. Выше 70 °C образуется моногидрат, при этом растворимость сульфата цинка падает до 44 % при 100 °C. Моногидрат обезвоживается при 238 °C.
Водные растворы сульфата цинка, несодержащие свободной кислоты, могут мутнеть вследствие выделения осадка основного сульфата цинка (3Zn(OH)2 х ZnSO4 х 4H2O).
Цинк сернокислый семиводный – белый кристаллический порошок или кристаллы. Химическая формула – ZnSO4 х 7H2O. Выветривается в сухом воздухе, растворим в воде, нерастворим в спирте.
По физико-химическим показателям соответствует следующим требованиям в зависимости от марки (массовые доли):
- семиводного сернокислого цинка – 98–99,5 %,
- нерастворимых веществ – не более 0,003–0,01 %,
- аммонийных солей – не более 0,001 %,
- нитратов – не более 0,0005–0,005 %,
- хлоридов – не более 0,0005–0,005 %,
- железа – не более 0,0005–0,001 %,
- натрияи кальция – не более 0,01–0,06 %.
Массовые доли прочих возможных примесей (марганца, мышьяка, меди, свинца) незначительны. pH 5%-ного раствора цинка сернокислого семиводного составляет 4,4–6.
Цинк сернокислый семиводный оказывает раздражающее действие на кожные покровы и слизистые оболочки.
Цинковый купорос – вещество, представленное в виде кристаллов, чешуек или гранул белого цвета (высший сорт) или различных цветовых оттенков (первый сорт). Химическая формула ZnSO4 х nH2O, где n ≤ 7.
Соответствует следующим нормам в зависимости от сортности (массовая доли):
- цинка – 39–37 %,
- хлора – не более 0,3–0,4 %,
- фтора – не более 0,3–0, 4 %.
Нерастворимого в кислой среде остатка содержится не более 0,03–0,05 %. Количество тяжелых металлов (свинца, меди, никеля, кадмия) по массе нормируется. Цинковый купорос пожаровзрывобезопасен. Относится ко второму классу опасности по степени воздействия на организм.
Удобрения , содержащие Сульфат цинка
Источник