Получение тепла химическим способом

Способ получения тепла

Владельцы патента RU 2443947:

Изобретение относится к энергетике и может использоваться для отопления жилых и нежилых помещений. Задачей изобретения является повышение эффективности нагрева теплоносителя для системы отопления. Для решения поставленной задачи предложен способ получения тепла, состоящий в том, что газы, кислород и водород, под избыточным давлением, в объемном соотношении 1 к 3 поступают в теплоноситель системы отопления, перемешиваются и вступают в химическую реакцию с выделением теплоты в теплоноситель в перемещающейся зоне сжатия ударной волны, распространяющейся вдоль потока циркулирующего теплоносителя. 1 ил.

Известны способы получения тепла в отопительных печах и котлах, использующих горение органического топлива — сложного физико-химического процесса превращения компонентов горючей смеси в продукты сгорания с выделением теплового излучения, света и лучистой энергии. Приближенно можно описать природу горения как бурно идущее окисление углеводородов.

Известны фрикционные способы получения тепла для нагрева жидкостей, заключающиеся в том, что тепло получают в результате трения друг о друга и/или о жидкость твердых тел, приводимых в движение в сосуде с жидкостью. Например, А.С. СССР № 1627790, МКИ F24J 3/00, Бюл. № 6, 1991 г.

Известны также гидродинамические (струйные) способы нагрева жидкостей, при которых тепло получают за счет воздействия струй жидкости друг на друга или на механические препятствия, размещенные на пути струй. При этом в тепло превращается часть кинетической энергии струи как за счет трения ее потока о препятствия, так и за счет ударных воздействий при кавитационных процессах, возникающих при этом /Акунов В. Струйные мельницы. — М.: Машиностроение, 1967, — 269 с./.

Недостатком этих способов является то, что при этих способах нагрев теплоносителя достигается через промежуточное устройство, например через стенку котла, или посредством дополнительных устройств, например механических препятствий, что снижает эффективность получения тепла в используемых способах.

Целью изобретения является повысить эффективность способа получения тепла. Поставленная цель достигается тем, что газы, кислород и водород, под избыточным давлением, в объемном соотношении 1 к 3 поступают в теплоноситель системы отопления, например в воду, перемешиваются и вступают в реакцию с выделением теплоты в теплоноситель в перемещающейся зоне сжатия ударной волны, распространяющейся вдоль потока циркулирующего теплоносителя.

Таким образом, заявляемый способ получения тепла посредством химической реакции между кислородом и водородом в жидком теплоносителе соответствует критерию новизна.

Изобретение поясняется чертежом, где изображен общий вид.

Для осуществления заявляемого способа получения тепла необходимо устройство, которое содержит: циркуляционный насос 1, система циркуляции теплоносителя 2, теплообменник 3, устройства ввода кислорода 4, устройство ввода водорода 5, устройство контроля соотношения элементов топлива 6, устройство создания звуковой ударной волны 7, гидроаккумулятор 8, предохранительный клапан 9. Циркуляционный насос 1 обеспечивает циркуляцию теплоносителя и перемешивание газов элементов топлива, кислорода и водорода.

Осуществление способа получения тепла.

Известно, что водород и кислород в соотношении 1:2 образует «гремучую смесь», которая может детонировать от воздействия света, тепла, ударов, при этом образуется вода и выделяется тепло. 2Н+О=Н2О+Q.

Известно, что ударная звуковая волна представляет собой распространение звуковых колебаний, которая имеет разную интенсивность в зависимости от мощности излучающего источника. Зона ударной волны представляет собой зону сжатия среды, которая отличается физическими параметрами: давлением, температурой, плотностью вещества.

Звуковая волна — это колебательный процесс в газе, жидкости или в твердом теле.

Звук — это упругие волны, продольно распространяющиеся в среде. Всякое колебание связано с нарушением равновесного состояния системы и выражается в отклонении ее характеристик от равновесных значений. Для звуковых колебаний такой характеристикой является давление в точке среды, а ее отклонение — звуковым давлением. Если произвести резкое смещение частиц упругой среды в одном месте, например, с помощью поршня, то в этом месте увеличится давление. Благодаря упругим связям частиц давление передается на соседние частицы, которые, в свою очередь, воздействуют на следующие, и область повышенного давления как бы перемещается в упругой среде. За областью повышенного давления следует область пониженного давления, и, таким образом, образуется ряд чередующихся областей сжатия и разрежения, распространяющихся в среде в виде волны. Каждая частица упругой среды в этом случае будет совершать колебательные движения.

Читайте также:  Задачи по теории вероятности способы решения

На базе этих явлений в теплоносителе происходит следующий процесс.

Растворенный и циркулирующий в теплоносителе системы отопления кислород и водород в зоне сжатия перемещающейся ударной волны, которая организуется устройством 7 для создания звуковой ударной волны, сближаются друг к другу на расстояние, достаточное для начала химической реакции взаимодействия с выделением теплоты, 2Н+О=Н2О+Q. Интенсивность реакции регулируется расходом топлива и генерацией ударной волны.

Способ получения тепла состоит в том, что газы, кислород и водород под избыточным давлением в объемном соотношении 1 к 3 поступают в теплоноситель системы отопления, перемешиваются и вступают в химическую реакцию с выделением теплоты в теплоноситель в перемещающейся зоне сжатия ударной волны, распространяющейся вдоль потока циркулирующего теплоносителя.

Источник

АВТОНОМНЫЕ ИСТОЧНИКИ ТЕПЛА (УСТРОЙСТВА ИНДИВИДУАЛЬНОГО ОБОГРЕВА). (Обзор)

НЕКОТОРЫЕ СВЕДЕНИЯ О ПРИНЦИПАХ РАБОТЫ

Угольные грелки.
Еще лет 90 назад изобретательская мысль обратилась к самому распространенному экзотермическому процессу — реакции горения. Появились устройства , в которых тлеющий угольный стержень, обернутый в специальную бумагу был помещен в металлический корпус, а последний в суконный чехол . Такие грелки весили сравнительно немного , а действовали 5-6 часов . На поверхности корпуса температура была от 60 до 100 градусов Цельсия .

С + О2 —> CО2 + 94 ккал/моль

Каталитические грелки.
Во время первой мировой войны в окопах мерзли миллионы солдат, и за четыре военных года изобретатели США , Японии и Англии запатентовали несколько вариантов карманных жидкостных грелок . Принцип их действия был прост: каталитическое беспламенное окисление спирта или бензина . Катализатором во всех случаях служила платина. Японская грелка выглядела как портсигар, внутри которого были резервуар, набитый ватой и платиновая прокладка. В корпусе были просверлены отверстия для подачи воздуха к катализатору и отвода газообразных продуктов горения. Для запуска грелки в резервуар заливался спирт, который пропитывал вату. Затем катализатор прогревали пламенем спички и начиналась реакция. Основной недостаток каталитических грелок — ограниченный срок службы: примеси, содержащиеся в горючем быстро отравляют катализатор и греющий портсигар становится бесполезным.

Грелки, использующие реакцию гашения извести.

Еще в 20-х годах в Германии для разогрева пищи в полевых условиях предложили использовать тепло, выделяющееся при гашении водой негашеной извести. Однако недостаточно большой тепловой эффект реакции помешал на первых порах практическому применению этой идеи. Шагом вперед стало сочетание двух реакций : гашения извести и ее нейтрализации . Для этого в известь ввели кристаллогидраты щавелевой или лимонной кислоты . Реакции в грелке пошли по следующей схеме.

СаО + Н2 О —> Ca(OH)2 + 10.6 ккал.
2Са(ОН)2 + Н2С2О4 + 2 Н2О —> CаС2О4 + 4Н2О + 31 ккал

С помощью этих двух реакций можно в портативном устройстве получить температуру от 100 до 300 градусов Цельсия . Кроме того , использование кристаллогидратов кислот позволяет запускать грелку небольшим количеством воды, а с очередными порциями извести будет реагировать вода, выделяющаяся при нейтрализации.

Читайте также:  Способы разделки кромок стыкового соединения

Грелки, использующие реакции окисления металлов.
В обычных условиях коррозия металлов на воздухе протекает, к счастью, медленно. Присутствие солей резко ускоряет процесс. В конце 20-х годов для обогрева бойцов Красной Армии была рекомендована «железная» грелка — в мешочек из прорезиненной ткани помимо железных опилок помещали перманганат калия и наполнители — уголь и песок. После добавления воды на поверхности грелки в течение 10-20 часов поддерживается температура 100 градусов Цельсия.

4Fe + 2H2 O + 3O2 —> 2(Fe2O3 * H2O) + 390.4 ккал/моль

Вместо железа в коррозионных грелках лучше применять алюминий. Тепла в этой реакции выделяется гораздо больше, чем при окислении железа :

8Аl + 3Fe3O4 —> 4Al2O3 + 9Fe + 795 ккал/моль

Грелки, использующие реакции вытеснения металлов.
В 1940 году в СССР был разработан обогревательный пояс — обтянутый кожей медный резервуар, который крепился на брючном ремне. В резервуар засыпали 200 г. реакционной смеси — алюминиевого порошка хлористой меди , взятых в стехиометрическом соотношении . Воду в количестве 100-120 мл. добавляли в резервуар из баллончика, находящегося в нагрудном кармане. Подачу воды регулировало несложное тепловое реле. Пояс мог согревать в течение 8 часов. Эта химическая грелка была новой не только по форме, но и по содержанию: впервые было использовано тепло, возникающее при вытеснении одного металла другим — более электроотрицательным. В Ленинграде, в блокадную зиму 1942 года , использовали грелки, заполненные смесью хлористой меди и железных стружек. От одной заправки водой такие грелки работали 60-70 часов.

Кристаллизационные грелки.
В кристаллизационных грелках используются вещества с низкими температурами плавления и относительно высокими теплотами плавления. Подобный термоаккумулятор отдает тепло, которое высвобождается при кристаллизации или затвердевании предварительно нагретого и расплавленного вещества. Классическое рабочее тело грелок-аккумуляторов парафин. Можно использовать также стеариновую кислоту, низко плавкие кристаллогидраты, например, глауберову соль Na2 SO4 * 10H2O или тригидрат ацетата натрия CH3COONa * 3H2O. Небольшие добавки к кристаллогидратам хлористого кальция, тиосульфита натрия или глицерина позволяют замедлить процесс кристаллизации и тем самым повысить продолжительность работы грелки. Грелка разогревается за 15 сек. до 55 °С и процесс выделения тепла продолжается 25-30 минут. Грелка обладает достаточно высокой теплоемкостью и еще минут 25-30 способна отдавать тепло в режиме остывания. Грелка кристаллизационного типа хороша, как лечебное и профилактическое средство при воспалительных процессах , для больных с различными формами радикулита, для тюбажа печени и других процедур в стационарных условиях (дома или в больнице).

Использование кристаллизационных грелок в чрезвычайных ситуациях в полевых условиях ограничено непродолжительностью режима тепловыделения грелок.

Основное достоинство грелок кристаллизационного типа — возможность многократного использования: для восстановления исходного состояния грелки достаточно прокипятить ее в воде в течении 15-20 минут.

ГРЕЛКА ИЗ ПРОБИРКИ
В походе, на рыбалке, особенно в непогоду часто возникает нужда обыкновенной грелке. Конечно, неплоха и обычная резиновая, но у нее есть один существенный недостаток: очень уж медленно греется для нее на костре вода.

Попробуем сделать химическую грелку. Для этого нам понадобятся самые обычные реактивы.

Для начала проведем несложный опыт. Пойдите на кухню и возьмите пачку поваренной соли. Впрочем, пачка не понадобится. Достаточно будет 20 г (2 чайных ложки). Затем загляните в шкафчик, где хранятся всевозможные хозяйственные препараты и материалы. Наверняка там сохранилось после ремонта квартиры немного медного купороса. Его понадобится 40 г (3 чайных ложки). Древесные опилки и кусок алюминиевой проволоки, надо полагать, тоже найдутся. Если так, все готово. Разотрите в ступке купорос и соль так, чтобы величина кристаллов не превышала 1мм (разумеется, на глаз). В полученную смесь добавьте 30 г (5 столовых ложек) древесных опилок и тщательно перемешайте. Кусок проволоки согните спиралью или змейкой, вложите в банку из-под майонеза. Туда же засыпьте подготовленную смесь так, чтобы уровень засыпки был на 1-1.5 см ниже горлышка банки. Грелка у вас в руках. Чтобы привести ее в действие, достаточно влить в банку 50 мл (четверть стакана) воды. Спустя 3-4 минуты температура грелки поднимется до 50-60° С.

Читайте также:  Самый эффективный способ сделать волосы густыми

Откуда берется в банке тепло, и какую роль играет каждый из компонентов? Обратимся к уравнению реакции:

В результате взаимодействия медного купороса с поваренной солью образуется сульфат натрия и хлорная медь. Именно она нас интересует. Если вычислить тепловой баланс реакции, то окажется, что при образовании одной грамм-молекулы хлорной меди выделяется 4700 калорий тепла. Плюс теплота растворения в исходных образующихся препаратов — 24999 калорий. Итого: примерно 29600 калорий.

Тотчас же после образования хлорная медь вступает во взаимодействие с алюминиевой проволокой:

При этом выделяется (также в пересчете на 1 г-моль хлорной меди) примерно 84000 калорий.

Как видите, в результате процесса суммарное количество выделяющегося тепла превышает 100000 калорий на каждую грамм-молекулу вещества. Так что никакой ошибки или обмана нет: грелка самая настоящая.

А что же опилки? Не принимая никакого участия в химических реакциях, они в то же время играют очень важную роль. Жадно впитывая в себя воду, опилки замедляют течение реакций, растягивают работу грелки во времени. К тому же древесина обладает достаточно низкой теплопроводностью: она как бы аккумулирует выделяющееся тепло и затем постоянно отдает его. В плотно закрытой посуде тепло сохраняется, по меньшей мере, два часа.

И последнее замечание: банка, конечно, не лучший сосуд для грелки. Она понадобилась нам только для демонстрации. Так что сами подумайте над формой и материалом для резервуара, в который поместить греющую смесь.

Источник: журнал «Юный техник», №5, 1983г., стр.78-79.
Автор: инженер Ф. Никулин.

Источник

Самодельное тепло: химическая грелка своими руками

Пищевая сода (бикарбонат натрия) весьма охотно реагирует с уксусной кислотой, образуя соль (ацетат натрия) и слабую углекислоту, которая тут же диссоциирует на углекислый газ и воду. Все компоненты и продукты реакции вполне безвредны, а насыщенная газом смесь активно пенится, делая пироги пышнее и заставляя школьников удивленно показывать пальцем.

Ацетат натрия находит самое широкое применение не только в качестве пищевой добавки (Е262), но и в химической промышленности — при окрашивании тканей, вулканизации резины — и, конечно, в составе согревающих «солевых грелок». Это вещество плавится при температуре около 58 °C и легко растворяется в воде, а если затем выпарить из него лишнюю влагу и остудить, можно получить перенасыщенный раствор, ждущий лишь легкого «толчка» для того, чтобы моментально кристаллизоваться.

Этот экзотермический процесс сопровождается выделением большого количества энергии — от 264 до 289 кДж/кг. В отличие от получения ацетата натрия, это не химическая реакция, а физический процесс, фазовый переход, и он вполне обратим. Стоит нагреть смесь (например, на водяной бане), ацетат снова растворится в остатках воды, и «грелку» можно использовать повторно.

Коротко ознакомившись с теорией, перейдем к практическим занятиям. Конечно, «солевую грелку» можно купить почти в любой аптеке, а готовый ацетат натрия — в первом же подходящем магазине химических реактивов. Но зачем? Все нужные ингредиенты можно найти на собственной кухне.

Источник

Оцените статью
Разные способы