- Направления получения пищевого белка методами биотехнологии.
- Получение пищевого белка
- Общая характеристика пищевого белка: история исследования, функциональные свойства, биотехнология. Методы получения. Синтез микробного белка на низших спиртах, на углеводном сырье. Грибной белок (микопротеин). Получения пищевых белков из соевого шрота.
- Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Направления получения пищевого белка методами биотехнологии.
ПОЛУЧЕНИЕ НУТРИЕНТОВ МЕТОДАМИ БИОТЕХНОЛОГИИ
Направления получения пищевого белка методами биотехнологии.
Особенности технологии белково-витаминных и белково-липидных концентратов на основе биомассы дрожжей.
Биотехнологические процессы получения пищевых кислот (лимонной, уксусной, молочной).
Направления получения пищевого белка методами биотехнологии.
В настоящее время в мире существует дефицит пищевого белка. При суточной норме потребления 70 г/сутки среднее потребление составляет 60 г/сутки. По данным РАМН в России начиная с 1992 года потребление белков животного происхождения снизилось на 25-35 % и составляет около 49 % от общего рациона белковой пищи при рекомендуемом соотношении животных и растительных белков 55 : 45. Общий дефицит пищевого белка на планете по данным ФАО/ВОЗ оценивается в 15-20 млн. тонн в год.
Пути решения проблемы белкового дефицита:
— повышение хранимоспособности сырья и пищевых продуктов, в первую очередь, животного происхождения;
— повышение производительности в животноводстве и растениеводстве методами селекции, генетической и клеточной инженерии;
— корректировка аминокислотного состава пищевого сырья и продуктов питания;
— вовлечение в производство продуктов питания белка микроорганизмов, микро- и макромицетов, гидробионтов, получаемого методами биотехнологии.
Одним из перспективных путей получения белковых веществ является микробный синтез — это реальное решение проблемы снятия дефицита белка в пище и кормах. Сырье, которое непосредственно не может идти на изготовление пищевых продуктов, с помощью микроорганизмов превращается в богатую белками биомассу. В этом случае необходимый азот в форме дешевых неорганических соединений (мочевины, солей аммония, нитратов) может почти без потерь использоваться для построения белков. Микроорганизмы способны накапливать до 60 — 70 % белка от АСБ.
Существуют три основных направления использования белка одноклеточных для пищевых целей:
1. цельная биомасса микроорганизмов;
2. частично очищенная от балластных веществ (облагороженная) биомасса;
3. изолированные из биомассы очищенные белки.
К микробным белкам, предназначенным для пищевых целей, предъявляются следующие требования:
— безопасность по санитарно-гигиеническим и токсикологическим показателям;
— высокая пищевая и биологическая ценность;
— соответствие органолептических показателей аналогам растительного и животного происхождения;
В настоящее время можно выделить четыре основных направления получения пищевого белка биотехнологическими методами:
1. получение биомассы дрожжей с высоким (не менее 50 % от АСБ) содержанием белка;
2. направленный синтез белков микромицетами;
3. выращивание макромицетов в условиях биореактора;
4. искусственное культивирование водорослей и других гидробионтов, богатых белком.
Применение цельной необлагороженной биомассы микроорганизмов как пищевого продукта вызывает наибольшие возражения, связанные с медико-биологическими аспектами. В настоящее время Министерством здравоохранения РФ разрешено использование в пищевых целях лишь биомассы высших базидиальных грибов. В США Управлением по контролю за пищевыми продуктами было дано разрешение на применение цельноклеточной биомассы дрожжей, выращенных на этаноле в стерильных условиях. В России и за рубежом проводятся исследования по получению и применению в пищевых целях облагороженной биомассы микроорганизмов. В этом отношении наиболее исследованным микробиологическим объектом являются дрожжи.
Дрожжи содержат 40 — 55 % белка и усваиваются организмом человека на 85 — 88 %, занимая по этому показателю промежуточное положение между белками растительного и животного происхождения. Белок дрожжей обычно беден метионином и цистеином, но богат лизином и треонином. Отсюда очевидна целесообразность его переработки вместе с белками зерновых культур.
В Великобритании, Франции, США, Нидерландах получают белковые экстракты из дрожжей в виде паст или порошкообразных продуктов. Дрожжевые экстракты содержат от 30 до 55 % белка и используются при производстве консервов, пищевых концентратов первых и вторых блюд, хлебобулочных, кондитерских и колбасных изделий, плавленых сыров. Добавление дрожжевых паст и порошков обычно не превышает 1,5 — 10 % массы пищевого продукта. В нашей стране были также разработаны технологии белковых пищевых добавок на основе хлебопекарных и пивных осадочных дрожжей, ферментативных гидролизатов и белковых изолятов из дрожжевой и бактериальной биомасс, выращенных на пищевых и непищевых питательных средах (меласса, этанол, метанол, природный газ, н-парафины).
На основе исследований, проводившихся во ВНИИСинтезбелок, была разработана технология высокомолекулярных белковых изолятов из дрожжей и бактерий. Технологическая схема включает следующие основные этапы: дезинтеграция клеток микроорганизмов в водной суспензии на установке, основанной на принципе декомпрессии, щелочная экстракция клеточных белков, нейтрализация, отделение остатков клеточных структур от белкового экстракта, очистка и сгущение последнего на ультрафильтрационных установках и обезвоживание. Белковые изоляты из микроорганизмов содержат около 80 % белка, 2 — 3 % нуклеиновых кислот и имеют молекулярную массу в диапазоне от 50000 до 300000 Д.
Теоретической предпосылкой использования микроскопических грибов в пищевой биотехнологии является способность многих видов к окнверси углеводов и других углеродных субстратов в вещества белковой природы. В качестве продучентов пищевого белка могут быть использованы грибы родов Aspergillus, Rhizopus, Mucor.
Ценным источником пищевого белка являются съедобные шляпочные грибы. Производство спорофоров и мицелия базируется на совершенно различных технологиях. Шляпочные грибы выращивают в питомниках, а производство мицелия является промышленным процессом ферментации. При выращивании шляпочных грибов мицелий является отходом, тогда как в процессе промышленного производства нитчатых грибов методом ферментации подбираются такие условия, при которых спорообразования не происходит.
Выращивание шляпочных грибов в промышленных условиях связано с определенными трудностями и существенными затратами. Эти грибы используют непосредственно как пищевой продукт или как вкусовую приправу к различным блюдам. В последнем случае приемлемо использование мицелиальных форм грибов. Мицелиальные массы в промышленных условиях начали получать в 40 — 50-х годах ХХ столетия. В настоящее время во многих странах производят в промышленных условиях съедобные грибы.
Для выращивания грибов используются практически любые отходы, особенно при поверхностном способе ферментации. На основе соломы, початков, кочерыжек, стеблей кукурузы, опилок с добавлением органических удобрений готовят твердые питательные среды, которые засевают мицелием гриба. После снятия урожая грибов остатки компоста, обогащенные мицелиальной массой, используют в кормопроизводстве. Приемлемым субстратом для биотехнологического процесса культивирования базидиальных съедобных грибов, удовлетворяющим требованиям безопасности и качества, предъявляемым к питательным средам для культивирования с целью получения пищевого продукта, является молочная сыворотка.
Важным источником пищевого белка являются зеленые (Chlorella vulgaris) и сине-зеленые (Spirulina platensis, Synechococcus elongatus, Coccopedia) водоросли. Потенциально могут также использоваться водородные бактерии (Hydrogenomonas eutropha Z-1). Эти микроорганизмы характеризуются высоким содержанием белка по сумме аминокислот (45 — 60 % — водоросли, 65 — 70 % — водородные бактерии).
По содержанию аминокислот белки водородных бактерий превосходят данные стандартной шкалы ФАО по всем аминокислотам, кроме цистеина и триптофана. Белки хлореллы содержат меньше изолейцина. Все водоросли дефицитны по серосодержащим аминокислотам и триптофану. Отношение суммы незаменимых аминокислот к общему азоту в продукте близко по величине для водорослей и водородных бактерий, но ниже, чем для стандартных продуктов (коровье молоко, гусиные яйца). Интересна также возможность получения из водорослей одновременно с белком кислых полисахаридов — важного компонента искусственных продуктов питания.
Установлено, что при полном обеспечении кислородом за счет фотосинтезирующей деятельности водорослей суточный прирост их составляет 500 — 600 г, в том числе 250 — 300 г белка. Белок водорослей достаточно полноценен, а биомасса одноклеточных водорослей содержит большое количество витаминов и минеральных веществ. В РФ разработана аппаратура и технология для непрерывного культивирования спирулины и хлореллы с целью получения белково-углеводного комплекса кормового и пищевой категории качества.
Одной из причин, сдерживающих развитие промышленного производства микроводорослей, является отсутствие эффективной технологии и аппаратуры, обеспечивающих получение продукции, по себестоимости сопоставимой с традиционными растительными продуктами. Большая часть крупных установок рассчитана на использование открытых бассейнов, однако относительно низкие капитальные затраты на их возведение не обеспечивают низкой себестоимости продукции.
В основу крупномасштабного микробного фотосинтеза НПО «Биотехника» было предложено использование аппаратов закрытого типа — фотореакторов. Исследование различных типов аппаратов показало перспективность для промышленного использования фотореакторов с трубчатой формой лучеприемника, обеспечивающей максимальную фотоэнергоемкость. Фотореактор включает также теплообменник, газообменное устройство для насыщения суспензии клеток диоксидом углерода и десорбции образующегося кислорода, побудитель расхода суспензии, а также специальное устройство, которое обеспечивает ежедневную очистку внутренних поверхностей без применения ручного труда и остановки аппарата.
Производство микроводорослей объединяют с линией комплексной безотходной переработки биомассы. В результате такой переработки получают ряд продуктов (в том числе ценных биологически активных веществ), производство которых обеспечивает экономическую рентабельность производства, а также дешевых полноценных кормовых продуктов. Так, например, при переработке биомассы хлореллы могут быть последовательно получены следующие продукты (в % к массе исходного сырья): липидный концентрат 8 — 13, белковый гидролизат 22 — 35, деструктат клеток (шрот) до 60.
Полученный белковый гидролизат содержит (в % СВ): свободные аминокислоты — 60, нуклеотиды — 6,85, остаточный белок — 4,12, углеводы (сумма) — 21,12. В составе гидролизата обнаружено значительное количество водорастворимых витаминов, главным образом группы В. Им могут быть заменены белковые основы, изготавливаемые в настоящее время из пищевого белкового сырья (мяса, рыбы, казеина).
Аналогичным образом осуществляется комплексная переработка биомассы некоторых других микроводорослей. Перспективным сырьем для получения серии ценных продуктов, в том числе биологически активных веществ, является биомасса спирулины, в которой содержится 60 — 68 % протеина. В зависимости от условий культивирования в биомассе спирулины обнаруживаются (в мг/100 г): β-каротин 300 — 600, рибофлавин 4 — 6,6, кобаламин 0,1 — 0,18. Клетки спирулины лишены прочной оболочки, что существенно упрощает технологию переработки биомассы.
Таким образом, получение пищевых белковых веществ из биомассы микроорганизмов является не только принципиально возможным, но и широко используется во многих станах. Однако белковые вещества микробиологического происхождения, за исключением высших базидиальных грибов, могут быть использованы в питании населения преимущественно в виде концентратов и изолятов.
Пищевые белки производят в виде трех основных типов продуктов, которые различаются по содержанию белка (около 50, 70 — 75, 90 % и выше) и его фракционному составу. К первому типу продуктов с содержанием около 50 % белка относят дезинтеграт биомассы дрожжей. Ко второму типу продуктов — концентраты из биомассы микроорганизмов с содержанием белка 70 — 75 %. Изоляты, содержащие 90 % белка, — наиболее дорогой и безопасный тип белковых продуктов на основе микробной биомассы.
Источник
Получение пищевого белка
Общая характеристика пищевого белка: история исследования, функциональные свойства, биотехнология. Методы получения. Синтез микробного белка на низших спиртах, на углеводном сырье. Грибной белок (микопротеин). Получения пищевых белков из соевого шрота.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 21.01.2017 |
Размер файла | 198,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://allbest.ru
белок пищевой биотехнология
В настоящей курсовой работе применяют следующие термины с соответствующими определениями:
Асептика — комплекс мероприятий, направленных на предотвращение попадания в среду или на объект посторонних микроорганизмов.
Брожение — биологический процесс расщепления сложных органических веществ. В зависимости от вида микроорганизмов, участвующих в процессе различают молочно-кислое, уксуснокислое, пропионово-кислое, спиртовое и иное брожение.
Биотехнология — комплекс естественных или искусственно созданных технологических приемов для создания биологических систем или использования в промышленных научных целях.
Мембрана — высокопористая или беспористая плоская или трубчатая перегородка, оформленная из полимерных или неорганических материалов и способная эффективно разделять частицы. Мембрана имеет большое количество пор (до 10 10 -10 11 на 1 м 2 ), диаметр которых не превышает 0,5 мкм.
Микрофильтрация — использование мембран с диаметром пор от 0,1 до 10 мкм для отделения мелких частиц твердой фазы, в том числе
Осаждение — процесс расслоения дисперсных систем под действием силы тяжести.
Стабилизаторы — вещества, добавляемые в кровь, сыворотку, вакцину и т.д. для сохранения их свойств.
Стерилизация — уничтожение микробов с помощью высокой температуры или химических свойств.
Термическая стерилизация — использование водяного пара под различным давлением и температурой.
Термолабильность — отсутствие у материала термостойкости и термостабильности.
Термостабильность — способность материала длительное время выдерживать нагревание при определенной температуре без изменения свойств продукта (без его разложения).
Термостойкость — способность материала противостоять нагреву до температуры, при которой происходит необратимое изменение его качества (разрушение физической или химической структуры).
Ультрафильтрация — разделение клеток и молекул с использованием мембран с диаметром пор от 0,001 до 0,1 мкм.
Упаривание — процесс концентрирования жидких растворов путем частичного удаления растворителя испарением при нагревании жидкости.
Химическая стерилизация — обработка элементов оборудования химическими веществами (формальдегид, перекись водорода, кислоты, спирты и т.д.)
Экстракция — процесс разделения смеси твердых и жидких веществ с помощью избирательных растворителей (экстрагентов).
Как известно, взрослому человеку при умеренной физической нагрузке ежедневно с пищей необходимо получать около 12,5 кДж (3000 калорий). Эту потребность в энергии могут покрыть 75 г. сахара. Но пища обеспечивает нас не только калориями. Организму нужен материал для роста и регенерации устаревших клеток и тканей, поэтому пища должна содержать белки, жиры, углеводы, витамины. Тот факт, что люди в основном ориентировались на потребление продуктов земледелия, скотоводства и рыболовства, объясняется тем, что в этих областях пищевого производства в свое время удалось достичь высокой производительности труда. По самым скромным подсчетам в масштабах планеты дефицит пищевого белка оценивается в 15-25 млн.т. в год, что связано с нехваткой и неполноценностью продуктов питания. Основным путем снижения и ликвидации этого дефицита является производство белков с помощью микробного синтеза, имеющие следующие преимущества: 1) микроорганизмы обладают высокой скоростью накопления биомассы (500 кг дрожжей за сутки дают 80т. белка, тогда как для быка того же веса за тот же период прирост белка составляет 400-500 гр.); 2) микробные клетки способны накапливать очень большое количество белка (дрожжи — до 60%, бактерии — до 75% по массе); 3) процесс микробного синтеза менее трудоемок и экономически выгоден по сравнению с химическим синтезом белков. Все эти преимущества и предопределили быстрое развитие технологии получения микробного белка, которая являетсясамой крупнотоннажной отраслью биотехнологии.
Целью данной курсовой работы является изучение методов получения пищевого белка.
Для достижения данной цели были поставлены следующие задачи:
1)Изучение характеристики пищевого белка;
2) Описание функциональных свойств пищевого белка;
3) Исследование методов производствапищевого белка
4) Представление технологической схемы производства пищевого белка на примере.
белок пищевой биотехнология
1.1 Общая характеристика пищевого белка
Белок — важнейший жизненно необходимый компонент питания, выполняет в пищевых продуктах две основные функции. Способность белка выполнять пищевую или питательную функцию характеризуют его биологической ценностью. Вторая функция — структурная . Она обеспечивает необходимую структуру, а также комплекс реологических и других физико-химических свойств перерабатываемых пищевых систем и готовых пищевых продуктов. Тем самым задаются консистенция, технологические и другие качества пищевых продуктов. Способность белка выполнять структурные функции, обеспечивая желаемые потребительские качества пищевого продукта, характеризуется широким комплексом физико-химических характеристик, объединяемых термином «функциональные свойства белка». Выполняя пищевую функцию, белок обеспечивает адекватность пищевого продукта физиологическим потребностям организма, в то время как выполнение им структурных функций призвано обеспечить потребительские качества пищевого продукта, его адекватность социально-культурным потребностям людей. Существенно, что реальный спрос на пищевые продукты обусловлен прежде всего экономическими и социальнокультурными факторами, поэтому он в большой мере определяется стоимостью и потребительскими (товароведными) характеристиками пищевого продукта, а не его биологической или пищевой ценностью, о которой потребитель обычно мало осведомлен. Потребительские характеристики продукта обеспечивают его покупку и потребление, что означает реализацию биологической ценности этого продукта. Отсюда первостепенное значение имеют структурные функции белка, обеспечивающие потребительские качества пищевого продукта и определяющие возможность реализации пищевой функции белка.
Биологическая ценность белка, не потребленного человеком, равна нулю. Она возрастает приблизительно до 10 % от максимально реализуемой в случае скармливания животному белка из новых нетрадиционных источников в соответствии с эффективностью конверсии белка кормов в белки мяса. Биологическая ценность нетрадиционного или недостаточно утилизируемого белка может быть наиболее полно реализована при его переработке в пищевые продукты. Следовательно, наиболее рационально применение пищевого белка для питания при его переработке в пищевые продукты, недорогие и привлекательные для потребителя. Отсюда вытекают ведущее значение структурной функции белка и проблемы получения белка с необходимыми функциональными свойствами, обеспечивающими как экономичность его переработки в пищевые продукты, так и их потребительские свойствНаряду с функциональными свойствами и биологической ценностью пищевого белка важным критерием его качества является стоимость. Она определяет возможность получения на основе белка достаточно недорогих пищевых продуктов массового потребления. Помимо стоимости пищевого белка существенное значение имеет и стоимость его переработки в пищу, т. е. придание ему необходимых потребительских качеств. Стоимость же переработки белка в значительной мере зависит от его функциональных свойств, которые, в свою очередь, влияют на выбор технологии переработки белка. В большинстве случаев возрастание степени очистки белка при его выделении ведет к повышению его функциональных свойств, стоимости, а зачастую и к снижению биологической ценности. При этом повышение стоимости белка и снижение его биологической ценности компенсируются тем, что улучшенные функциональные свойства позволяют перерабатывать этот белок с меньшими затратами в более широкий ассортимент пищевых продуктов различного состава и пищевой ценности, в том числе в наиболее дорогостоящие комбинированные мясные и молочные изделия и их аналоги. Кроме того, белки с более высокой степенью очистки обычно легче и дольше сохраняются, отличаются более высокой стандартностью, что способствует снижению стоимости их переработки в пищу. Следовательно, среди ряда показателей качества белка превалирующее значение принадлежит функциональным свойствам. При этом во всех случаях сохраняется значение биологической ценности и стоимости белка[1].
1.2 История исследования
Белок попал в число объектовхимических исследований 250 лет тому назад. В 1728 году итальянский ученый Якопо Бартоломео Беккари получил из пшеничной муки первый препарат белкового вещества — клейковины. Он подверг клейковину сухой перегонке и убедился, что продукты такой перегонки были щелочными. Это было первое доказательство единства природы веществ растительного и животного царств. Он опубликовал результаты своей работы в 1745 году, и это была первая статья о белке.
В XVIII — начале XIX веков неоднократно описывали белковые вещества растительного и животного происхождения. Особенностью таких описаний было сближение этих веществ и сопоставление их с веществами неорганическими.
Важно отметить, что в это время, еще до появления элементного анализа, сложилось представление о том, что белки из различных источников — это группа близких по общим свойствам индивидуальных веществ.
В 1810 году Жозеф Гей-Люссакк и Луи Тенар впервые определили элементный состав белковых веществ. В 1833 году Ж. Гей-Люссак доказал, что в белках обязательно присутствует азот, а вскоре было показано, что содержание азота в различных белках приблизительно одинаково. В это же время английский химик Джон Дальтон попытался изобразить первые формулы белковых веществ. Он представлял их довольно просто устроенными веществами, но чтобы подчеркнуть их индивидуальное различие при одинаковом составе, он прибег к изображению молекул, которые бы сейчас назвали изомерными. Однако понятия изомерии во времена Дальтона еще не было..
Одной из самых распространенных теорий доструктурной органической химии была теория радикалов — неизменных компонентов родственных веществ. В 1836 году голландец Г. Мульдер высказал предположение о том, что все белки содержат один и тот же радикал, который он назвал протеином (от греческого слова «первенствую», «занимаю первое место»).
В середине XIX века были разработаны многочисленные методы экстракции белков, очистки и выделения их в растворах нейтральных солей. В 1847 году К. Рейхерт открыл способность белков образовывать кристаллы. В 1836 году Т. Шванн открыл пепсин — фермент, расщепляющий белки. В 1856 году Л. Корвизар открыл еще один подобный фермент — трипсин. Изучая действие этих ферментов на белки, биохимики пытались разгадать тайну пищеварения. Однако наибольшее внимание привлекли вещества, получающиеся в результате действия на белки протеолитических ферментов (протеаз, к ним относятся вышеприведенные ферменты): одни из них были фрагментами исходных молекул белка (их назвали пептонами), другие же не подвергались дальнейшему расщеплению протеазами и относились к известному еще с начала века классу соединений — аминокислот (первое аминокислотное производное — амид аспарагин был открыт в 1806 году, а первая аминокислота — цистин в 1810). Аминокислоты в составе белков впервые обнаружил в 1820 году французский химик Анри Браконно. Он применил кислотный гидролиз белка и в гидролизате обнаружил сладковатое вещество, названное им глицином. В 1839 году было доказано существование в составе белков лейцина, а в 1849 году Ф. Бопп выделил из белка еще одну аминокислоту — тирозин.
К концу 80-х гг. XIX века из белковых гидролизатов было выделено уже 19 аминокислот и стало медленно укрепляться мнение, что сведения о продуктах гидролиза белков несут важную информацию о строении белковой молекулы. Тем не менее, аминокислоты считались обязательным, но неглавным компонентом белка.
Немецким химиком Э.Фишер была разработана пептидная теория, получившая общее признание во всем мире.
Немаловажно, что Фишер построил план исследования, резко отличающийся от того, что предпринималось раньше, однако учитывающий все известные на тот момент факты. Прежде всего он принял, как наиболее вероятную гипотезу о том, что белки построены из аминокислот, соединенных амидной связью:
Рис.2 — Амидная связь по представлению Фишера
Такой тип связи Фишер назвал (по аналогии с пептонами) пептидной. Он предположил, что белки представляют собой полимеры аминокислот, соединенных пептидной связью. Доказывая пептидный тип соединения аминокислотных остатков. Э. Фишер исходил из следующих наблюдений. Во-первых, и при гидролизе белков, и при их ферментативном разложении образовывались различные аминокислоты. Другие соединения было чрезвычайно трудно описать а еще труднее получить. Кроме того Фишеру было известно, что у белков не наблюдается преобладания ни кислотных, ни основных свойств, значит, рассуждал он, амино- и карбоксильные группы в составе аминокислот в белковых молекулах замыкаются и как бы маскируют друг друга (амфотерность белков, как сказали бы сейчас).
Решение проблемы строения белка Фишер разделил, сведя ее к следующим положениям [3]:
1) Качественное и количественное определение продуктов полного гидролиза белков.
2) Установление строения этих конечных продуктов.
3) Синтез полимеров аминокислот с соединениями амидного (пептидного) типа.
4) Сравнение полученных таким образом соединений с природными белками.
В дальнейшем пептидная теория Фишера была многочисленно пересмотренаи дополнена.
1.3 Функционыльные свойства белка
Понятие о функциональных свойствах белка впервые ввели Серкл и Джонсон в 1962 г. Под функциональными свойствами белка понимают физико-химические характеристики, определяющие его поведение при переработке в пищевые продукты, а также обеспечивающие желаемые структуру, технологические и потребительские свойства готовых пищевых продуктов. Эта область научных исследований имеет центральное, ключевое значение для развития технологии переработки белка в новые формы пищи. К наиболее важным функциональным свойствам белка относят растворимость и набухание, способность стабилизировать дисперсные системы (пены, эмульсии и суспензии), образовывать гели, адгезионные и реологические свойства белковых систем, прядомость растворов белка и др. Высокими функциональными свойствами характеризуются белки, хорошо растворимые в водных средах, способные образовывать высококонцентрированные растворы, суспензии и гели, а также эффективно стабилизирующие эмульсии и пены. Существенно, чтобы эти свойства могли проявляться при pH, температуре и составе систем, характерных для процессов переработки и выделения белка, а также для готовых пищевых продуктов. Белки с низкими функциональными свойствами слаборастворимы, нерастворимы и не набухают в водных средах (без химической модификации, деструкции или гидролиза), не способны образовывать вязкие концентрированные суспензии (тестовые массы), гели, стабилизировать пены и эмульсии. Подобные белки обычно используют для получения пищевых гидролизатов, в виде небольших добавок в пищевые продукты, а также в составе кормов.
Понятие «функциональные свойства белка» охватывает широкий комплекс физико-химических характеристик белоксодержащих водных систем. Это понятие, как правило, относится к свойствам весьма концентрированных, многокомпонентных белоксодержащих систем. Ввиду того что в этих случаях невозможно предсказать функциональные свойства систем на основе молекулярных характеристик белка, преобладающую роль в их оценке играют эмпирические методы. Поэтому функциональные характеристики исследуют в основном с помощью эмпирически выбираемых методик, причем лишь некоторые из них стандартизированы. Получаемые количественные результаты для исследуемого белка сопоставляют с результатами исследования других белков, выбранных для сравнения.
Изучение функциональных свойств белка является ключевым научным направлением проблемы получения новых форм пищи, обеспечивая разработку рецептур многокомпонентных пищевых систем, выбор процессов и режимов их переработки в пищевые изделия. Несмотря на значительные усилия, предпринятые в этой области большим числом научных коллективов, научные и прикладные аспекты проблемы изучения функциональных свойств белка разработаны крайне недостаточно, что обусловлено ее исключительной сложностью.
Эта область исследований находится в процессе формирования, так что даже общепринятая терминология в ней еще не разработана. В последнее десятилетие достигнуты заметные успехи в области моделирования многокомпонентных пищевых систем, оценки и регулирования функциональных свойств белков[2].
2. Биотехнология пищевого белка
2.1 Методы получения белка
2.1.1 Получение микробного белка на низших спиртах
Культивирование на метаноле. Основное преимущество этого субстрата — высокая чистота и отсутствие канцерогенных примесей, хорошая растворимость в воде, высокая летучесть, позволяющая легко удалять его остатки из готового продукта. Биомасса, полученная на метаноле, не содержит нежелательных примесей, что дает возможность исключить из технологической схемы стадии очистки.
Однако, необходимо учитывать при проведении процесса и такие особенности метанола, как горючесть и возможность образования взрывоопасных смесей с воздухом.
В качестве продуцентов, использующих метанол в конструктивном обмене, были изучены как дрожжевые, так и бактериальные штаммы. У дрожжей были рекомендованы в производство Candidaboidinii, Hansenulapolymorpha и Piehiapastoris, оптимальные условия для которых (t=34-37°C, рН=4,2-4,6) позволяют проводить процесс с экономическим коэффициентом усвоения субстрата до 0,40 при скорости протока в интервале 0,12-0,16 ч -1 . Среди бактериальных культур применяется Methylomonasclara, Pseudomonasrosea и др, способные развиваться при t=32-34°C, рН=6,0-6,4 с экономическим коэффициентом усвоения субстрата до 0,55 при скорости протока до 0,5 ч -1 .
Особенности процесса культивирования во многом обусловлены применяемым штаммом-продуцентом (дрожжи или бактерии) и условиями асептики. Ряд зарубежных фирм предлагает использовать дрожжевые штаммы и проводить выращивание в отсутствии строгой асептики. В этом случае технологический процесс протекает в ферментёре инжекционного типа производительностью 75 т АСВ в сутки, а удельный расход метанола составляет 2,5 т/т АСВ.
В ряде стран в качестве продуцентов применяются бактериальные штаммы, процесс проводится в асептических условиях в ферментерах эрлифитного или струйного типов производительностью 100-300 т/сут и расходом метанола до 2,3 т/т АСВ. Ферментация осуществляется одностадийно при невысоких концентрациях спирта (до 12 г/л) с высокой степенью утилизации метанола.
Наиболее перспективным по своей конструкции является струйный ферментёр Института технической химии АН ГДР. Ферментёр объемом 1000м 3 состоит из секций, расположенных одна над другой и соединенных между собой шахтными переливами. Ферментационная среда из нижней секции ферментёра по напорному трубопроводу подается центробежными циркуляционными насосами в верхние шахтные переливы, через которые проходит в низлежащую секцию, подсасывая при этом воздух из газовода. Таким образом, среда протекает из секции в секцию, постоянно подсасывая новые порции воздуха. Падающие струи в шахтных переливах обеспечивают интенсивноеаэрирование среды.
Питательная среда непрерывно подается в зону верхних шахтных переливов, а микробная суспензия отводится из выносных контуров. На стадии выделения для всех видов продуцентов предусмотрено отделение грануляции с целью получения готового продукта в гранулах.
В качестве микроорганизмов — продуцентов белка на этиловом спирте как единственном источнике углерода могут использоваться дрожжи (Candidautilis, Sacharomyceslambica, Hansenulaanomala, Acinetobactercalcoaceticus). Процесс культивирования проводят одностадийно в ферментерах с высокими массообменными характеристиками при концентрации этанола не более 15 г/л.
Дрожжи, выращенные на этаноле, содержат (%): сырого протеина 60-62; липидов 2-4; золы 8-10; влаги до 10.
2.1.2 Получение белковых веществ на углеводном сырье
Исторически одним из первых субстратов, используемых для получения кормовой биомассы, были гидролизаты растительных отходов, предгидрализаты и сульфитный щелок — отходы целлюлозно-бумажной промышленности. Интерес к углеводному сырью как основному возобновляемому источнику углерода значительно возрос еще и с экологической точки зрения, так как оно может служить основой для создания безотходной технологии переработки растительных продуктов.
В связи с тем, что гидролизаты представляют собой сложный субстрат, состоящий из смеси гексоз и пентоз, среди промышленных штаммов- продуцентов получили распространение виды дрожжей C.utilis, C.scottii и C.tropicalis, способные наряду с гексозами усваивать пентозы, а также переносить наличие фурфурола в среде.
Состав питательной среды в случае культивирования на углеводородном сырье значительно отличается от применяемого при выращивании микроорганизмов на углеводородном субстрате. В гидролизатах и сульфитных щелоках имеются в небольшом количестве практически все необходимые для роста дрожжей микроэлементы. Недостающие количества азота, фосфора и калия вводятся в виде общего раствора солей аммофоса, хлорида калия и сульфата аммония.
Ферментация осуществляется в эрлифтных аппаратах конструкции Лефрансуа-Марийе объемом 320 и 600 м 3 . Процесс культивирования дрожжей осуществляется в непрерывном режиме при рН 4,2-4,6. Оптимальная температура от 30 до 40°С.
2.1.3 Грибной белок (микопротеин)
Микопротеин — это пищевой продукт, состоящий в основном из мицелия гриба. При его производстве используется штамм Fusarium graminearum, выделенный из почвы. Микопротеин производят сегодня на опытной установке методом непрерывного выращивания. В качестве субстрата используется глюкоза и другие питательные вещества, а источниками азота служат аммиак и аммонийные соли. После завершения стадии ферментации культуру подвергают термообработке для уменьшения содержания рибонуклеиновой кислоты, а затем отделяют мицелий методом вакуумного фильтрования.
Если сопоставить производство микопротеина с процессом синтеза белков животных, то выявится ряд его преимуществ. Помимо того, что здесь выше скорость роста, превращение субстрата в белок происходит несравненно эффективнее, чем при усвоении пищи домашними животными.
Положительным фактором является и волокнистое строение выращенной культуры; текстура массы мицелия близка к таковой у естественных продуктов, поэтому у продукта может быть имитирована текстура мяса, а за счет добавок — его вкус и цвет. Плотность продукта зависит от длины гиф выращенного гриба, которая определяется скоростью роста.
После проведения всесторонних исследований питательной ценности и безвредности микопротеина министерство сельского хозяйства, рыболовства и пищевых продуктов дало разрешение на его продажу в Англии. Содержание питательных веществ в нем указано в таблице 1.
Таблица 1. Средний состав микопротеина и сравнение его с составом говядины.
Источник