Производство фосфорной кислоты электротермическим методом
1.2.1 Физико-химические основы процесса
Электротермический метод производства фосфорной кислоты основан на восстановлении фосфатов до элементарного фосфора, его последующем окислении до оксида фосфора (V) и гидратации оксида до фосфорной кислоты:
1. Получение фосфора. Восстановление фосфора из природных фосфатов представляет собой сложный многостадийный гетерогенный процесс, протекающий через стадии:
— нагревание компонентов шихты,
— поступление в расплав фосфата кальция и оксида кремния,
— диффузия продуктов диссоциации к поверхности частиц углерода,
— взаимодействие трикальцийфосфата с углеродом и образование фосфора, оксида углерода (II) и оксида кальция,
— удаление оксида кальция из зоны реакции в виде силикатов кальция.
В отсутствии флюсов реакция восстановления протекает при 1400°С в течение 20 минут. Для снижения температуры процесса и смещения равновесия реакции вправо в систему вводят оксид кремния, оксид алюминия или алюмосиликаты, связывающие образующийся оксид кальция в виде легко удаляемого шлака:
В присутствии флюсов реакция восстановления протекает с достаточно высокой скоростью при 1100 — 1300°С. Протекает в диффузионной области и ускоряется факторами, усиливающими диффузию в твердой фазе и в расплаве: повышением дисперсности компонентов шихты, образованием легкоплавких полиэвтектических систем и т.п. Для повышения подвижности расплава и облегчения выгрузки шлаков процесс восстановления ведут на практике при 1500°С.
2. Сжигание фосфора — гетерогенный экзотермический процесс, протекает по уравнению:
Степень окисления фосфора зависит от температуры в зоне горения и от скорости диффузии кислорода к поверхности жидкого фосфора. Чтобы обеспечить полноту сгорания и исключить возможность образования низших оксидов фосфора, процесс ведут при температуре 1000 — 1400°С и двукратном избытке воздуха.
3. Гидратация оксида фосфора (V) протекает через ряд стадии. На первой стадии процесса, вследствие высокой температуры в системе, взаимодействие паров оксида фосфора с водой дает метафосфорную кислоту.
При понижении температуры метафосфорная кислота через полифосфорные кислоты превращается в фосфорную (ортофосфорную) кислоту:
Процесс гидратации димера оксида фосфора (V) является экзотермическим и сопровождается выделением значительного количества тепла, что учитывается при организации этой стадии технологического процесса.
Технологический процесс производства фосфорной кислоты электротермическим методом может строиться по двум вариантам:
—по одноступенчатой схеме, без предварительной конденсации паров фосфора, с непосредственным сжиганием выходящего из стадии восстановления фосфорсодержащего газа;
—по двухступенчатой схеме, с предварительной конденсацией паров фосфора и последующей переработкой его в фосфорную кислоту (рис. 5.):
Рис. З. Технологические схемы производства фосфорной кислоты термическим методом: — двухступенчатая, одноступенчатая
При окислении фосфора и гидратации оксида фосфора (V) выделяется большое количество тепла, которое для поддержания оптимального теплового режима процесса должно отводиться из системы.
Наиболее распространены циркуляционно-испарительные схемы, в которых охлаждение газов происходит за счет теплообмена с циркулирующей фосфорной кислотой и в результате испарения из нее воды. Подобная технологическая схема установки производительностью 60 тыс. тонн в год 100% -ной кислоты или 2,5 т/час по сжигаемому фосфору, приведена на рис. 6.
В трехфазную электропечь РКЗ-72 Ф (руднотермическая, круглая, закрытая, мощностью 72 MB. А, фосфорная) с самоспекающимися анодами 1 поступает из бункера 2 шихта, состоящая из фосфата, оксида кремния (кварцита) и кокса. Выходящий из печи газ, содержащий 6—10% фосфора, проходит через газоотсекатель 3 в электрофильтр 4, где из него извлекается пыль. Очищенный газ направляется в конденсаторы — промыватели — горячий 5 и холодный 6, охлаждаемые разбрызгиваемой в них водой, которая циркулирует по замкнутому контуру. Сконденсировавшийся жидкий фосфор собирается в сборниках 7 и 8, откуда поступает в отстойник 9.
Степень конденсации фосфора из газа достигает 0,995. Выходящий из конденсаторов газ, содержащий до 85% об. оксида углерода используется в качестве топлива или сжигается. Шлаки, скапливающиеся в нижней части печи 1, непрерывно скачиваются и используются в производстве цемента и других строительных материалов. Из отстойника 9 расплавленный фосфор подается в башню сгорания 10, где распыляется форсунками в токе воздуха. В башню для охлаждения подается циркуляционная фосфорная кислота, охлаждаемая предварительно в холодильнике 11, часть ее в виде 75%-ной фосфорной кислоты, отводится в качестве продукционной и поступает на склад. Для пополнения в систему вводится необходимое количество воды. Из башни сгорания газ при температуре 100°С поступает в башню гидратации-охлаждения 12, орошаемую фосфорной кислотой, где заканчивается процесс гидратации. За счет орошения температура фосфорной кислоты на выходе снижается до 40 — 45°С. Циркулирующая в башне гидратации кислота охлаждается в холодильнике 13. Из башни гидратации 12 газ направляется в электрофильтр 14. Сконденсировавшаяся в нем из тумана фосфорная кислота поступает в сборник 15, а отходящие газы выбрасываются в атмосферу.
|
Рис. 4. Технологическая схема производства термической фосфорной кислоты двухстадийным методом: 1 — электропечь, 2 — бункер шихты, 3 — газоотсекатель, 4, 14 — электрофильтры, 5 -горячий конденсатор, 6 — холодный конденсатор, 7, 8 — сборник жидкого фосфора, 9 -отстойник жидкого фосфора, 10 — башня сгорания, 11, 13 — холодильники, 12 — башня гидратации, 15 — сборник фосфорной кислоты.
Расход циркулирующей фосфорной кислоты на охлаждение процессов сгорания и гидратации составляет: в башне сгорания 500 — 750 м 3 /час, в башне гидратации 150м 3 /час.
Основными аппаратами в производстве термической фосфорной кислоты являются башня сгорания (сжигания) и башня гидратации.
Башня сгорания полая, имеет коническую форму, диаметр около 4 м и высота около 14 м. Крышка башни охлаждается водой и имеет форсунку для распыления фосфора. Башня гидратации выполнена в виде цилиндра высотой 15 м и диаметром 3 м и содержит насадку из колец Рашига и три яруса форсунок для распыления кислоты.
По сравнению с электротермический методом производства фосфорной кислоты, экстракционным метод имеет следующие преимущества:
— возможность получения кислоты высокой концентрации, включая полифосфорные кислоты концентрацией до 115% Р2О5;
— высокая чистота продукта;
— возможность использования фосфатного сырья с низкой концентрацией фосфора без предварительного обогащения.
Представляет интерес, пока еще теоретический, проблема получения оксида фосфора (V) непосредственно из фосфатов термической диссоциацией трикалийфосфата:
по аналогии с промышленным процессом диссоциации карбоната кальция:
СаСОз ® СаО + СО2+DН, где DН = 178 кДж.
Однако практическая реализация этого метода ограничена чрезвычайно высоким для практического использования значением теплового эффекта и связано с необходимостью обеспечения высоких температур и большой затратой энергии.
1.3. Изображение графических моделей ХТС
Химическая схема ХТС
Смесь серной кислоты и оборотного раствора фосфорной кислоты из сборника 2 и фосфат из бункера 1 подают в многосекционный экстрактор 3. По мере движения пульпы в экстракторе образуется фосфорная кислота и завершается процесс кристаллизации сульфата кальция. Из последней секции экстрактора пульпа поступает на трехсекционный вакуум-фильтр 4. Основной фильтрат Ф-1 из первой секции фильтра отводится как продукционная фосфорная кислота, причем часть ее добавляется к оборотному раствору, направляемому в сборник кислоты 2. Осадок кальция на фильтре промывается противотоком горячей водой, при этом промывной раствор Ф-3 используется для первой промывке во второй секции фильтра. Фильтрат первой промывки Ф-2 направляется в виде оборотного раствора в сборник 2.
Технологическая схема ХТС
|
Рис.5. Технологическая схема производства экстракционной фосфорной кислоты полугидратным методом: 1 — бункер фосфата, 2 — сборник серной кислоты, 3 — экстрактор, 4 — вакуум-фильтр, 5 — подогреватель фосфорной кислоты, 6 — концентратор, 7 — промывной скруббер, 8 -сборник промывной жидкости
Образовавшаяся фосфорная кислота (Ф-1) подогревается в подогревателе 5 паром и поступает в концентратор 6, где упаривается до заданной концентрации за счет прямого контакта с топочными газами и направляется на склад. Выделяющиеся из концентратора газы проходят промывной скруббер 7, в котором улавливаются соединения фтора и выбрасываются в атмосферу. Газы, выделяющиеся из экстрактора и содержащие фтористый водород и тетрафторсилан, поступают на абсорбцию в абсорбер, орошаемой водой или разбавленной кремнефтористоводородной кислотой. Основные аппараты в производстве экстракционной кислоты — экстрактор и вакуум-фильтр. Экстрактор — это железобетонный аппарат прямоугольного сечения, разделенный на 10 секций с мешалками, в котором пульпа последовательно перетекает из одной секции в другую. В другом варианте экстрактор составляют два сблокированных стальных цилиндра со многими мешалками. При рабочем объеме экстрактора 730 м 3 производительность его равна 340 т/сутки РгО5 при интенсивности около 25 кг/м 3 -ч.
Операторная схема ХТС
|
Структурная схема ХТС
1 — экстрактор, 2 – вакуум-фильтр, 3 – подогреватель фосфорной кислоты, 5 – концентратор
Функциональная схема ХТС
В данной курсовой работе рассмотрены методы получения экстракционной фосфорной кислоты. Наиболее перспективным является полугидратный способ получения фосфорной кислоты, так как дает возможность получения концентрированной фосфорной кислоты (35-37% Р2О5) и увеличение эффективности стадии фильтрации пульпы в 1,5-2 раза по сравнению с дигидратным способом.
В работе представлена характеристика исходного сырья и готовой продукции. Построены химическая, функциональная, структурная, операторная модели ХТС по получению фосфорной кислоты.
Задание
Определить, какое количество апатитового концентрата необходимо для получения 1 тонны 96% фосфорной кислоты, если известно, что апатитовый концентрат содержит 38% пустой породы, а степень его превращения составляет 86%.
Для решения данной задачи необходимо сложить следующие реакции:
1. Рассчитаем количество H3PO4:
х = т
2. Рассчитаем количество апатитового концентрата.
х = = 2,468 т
3. С учетом степени превращения получим:
х = = 2,869 т
4. Рассчитаем количество апатитового концентрата, с учетом пустой породы: 2,869 т – 62%
х = = 4,627 т
Список используемой литературы
1. Абалонин Б. Е. Основы химических производств: учеб. / Б. Е. Абалонин, И. М. Кузнецова, X. Э. Харламниди. — М.: Химия. — 2001. — 472 с.
2. Балабеков О. С. Очистка газов в химической промышленности. Процессы иаппараты / О. С. Балабеков, Л. Ш. Балтабаев. — М.: Химия. — 1991. — 256 с.
3. Кафаров В. В. Принципы создания безотходных химических производств / В. В. Кафаров. — М.: Химия. — 1982. — 288 с.
4. Кнунянц И. Л. Химическая энциклопедия / И. Л. Кнунянц т. 5. — М.: Советская энциклопедия. – 1988. – 671с.
5. Соколов Р. С. Химическая технология: учеб. пособие для вузов / Р.С. Соколов т. 1. -М.: Владос-пресс. -2000. -516 с.
Источник
Большая Энциклопедия Нефти и Газа
Электротермическое производство — фосфор
Электротермическое производство фосфора является одним из энергоемких производств. На 1 т P2Os расходуется от 4 8 до 7 0 МВт-ч электроэнергии. Непрерывное увеличение ее выработки в нашей стране способствует развитию электротермического производства фосфора и на его основе кислоты, солей, кормовых средств и удобрений. Мощные электростанции создаются в различных экономических районах страны и эти электростанции связаны между собой высоковольтными линиями электропередачи ( ЛЭП) и объединены в общие энергетические системы, что обеспечивает надежность энергетической базы этого производства. [1]
Шлаки электротермического производства фосфора по составу весьма близки к доменным шлакам; они характеризуются высоким содержанием СаО и SiO2 ( 80 — 90 %) и небольшим А12О3 ( 2 — 3 %), MgO ( 3 — 4 %), фосфора и фтора. В гранулированном виде они состоят преимущественно из стекла с включениями мелких кристаллов псевдоволластонита. Стекловидная фаза имеет микронеоднородное строение, что свидетельствует о происходящих в расплаве процессах микроликвации. [2]
Возможно комбинирование электротермического производства фосфора с процессом синтеза карбамида ( стр. [3]
При выщелачивании шлаков электротермического производства фосфора из апатитового сырья азотной кислотой, например, может быть получен дисперсный диоксид кремния и раствор нитрата кальция, перерабатываемый в известково-ам-миачную селитру, используемую в качестве удобрения, с одновременным получением соединений редкоземельных элементов их экстракцией трибутилфосфатом и реэкстрак-цией водой с последующим осаждением аммиаком в виде гидрокси-дов. Обработка таких шлаков соляной кислотой обеспечивает возможность получения концентрата редкоземельных элементов наряду с производством высокочистого диоксида кремния и товарного хлорида кальция. Проведенные экономические расчеты указывают на возможность существенного увеличения эффективности использования в этих случаях исходного фосфатного сырья. [4]
При выщелачивании шлаков электротермического производства фосфора из апатитового сырья азотной кислотой, например, может быть получек дисперсный диоксид кремния и раствор нитрата кальция, перерабатываемый а известково-аммиачную селитру, используемую в качестве удобрения, с одновременным получением соединений редкоземельных элементов их экстракцией трибутилфосфатом и реэкстракцией водой с последующим осаждение аммиаком в виде гидроксидов. Обработка таких шлаков соляной кислотой обеспечивает возможность получения концентрата редкоземр. Проведенные экономические расчеты указывают на возможность существенного увеличения эффективности использования в этих случаях исходного фосфатного сырья. [5]
В отличие от производства карбида кальция, основной продукт электротермического производства фосфора выделяется в газообразной фазе; поэтому электрические печи для возгонки фосфора должны быть обязательно закрытыми. Пары фосфора и окись углерода выходят через-трубу в крышке печи и направляются в конденсационные установки. [6]
Производство карбида кальция во всех странах в последнее время превышает 3 5 млн. тв год ( общий расход электроэнергии составил около Ю млрд. квт-ч), электротермическое производство фосфора ( по неполным данным) составляет около 500 тыс. от в год ( общий расход электроэнергии свыше. [7]
Чтобы предотвратить возможность отравлений, необходимо герметизировать аппаратуру и следить за исправностью вентиляции. При тщательной герметизации аппаратуры и строгом соблюдении технологического режима электротермическое производство фосфора и фосфорной кислоты-одно из чистых и безвредных производств, для обслуживания которого требуется немного рабочих. В случае нарушения герметичности аппаратуры помещение заполняется густым туманом фосфорной кислоты, вызывающим кашель и слезотечение; частицы фосфора, оседающие на пол, самовоспламеняются, а при трении о подошвы искрят. [8]
Гранулирование расплавов индивидуальных солей весьма ограничено в практике рекуперации твердых отходов. Гранулирование силикатных расплавов, напротив, широко используется при переработке шлаков текущего выхода в черной и ( ограниченно) цветной металлургии, электротермического производства фосфора . Соответствующие приемы гранулирования и механизмы этих процессов охарактеризованы ниже. [9]
Продукты нейтрализации, хотя и называют полифосфатами, но они, в отличие от истинных полимерных форм фосфатов, представляют собой смесь фосфатов, как правило, низкомолекулярных, начиная от орто -, пиро — и далее до п 8 ч — 10 атомов фосфора в цепи. Технология производства этих соединений разработана недостаточно и изучалась применительно к использованию жидкой ортофосфорной кислоты. Широкое развитие электротермического производства фосфора и получение полифосфорных кислот выдвигает задачу их переработки в различные формы концентрированных удобрений. С) и не кристаллизуются при длительном хранении, как это имеет место для высоких концентраций ортофосфорной кислоты. [11]
Электротермическое производство фосфора является одним из энергоемких производств. На 1 т P2Os расходуется от 4 8 до 7 0 МВт-ч электроэнергии. Непрерывное увеличение ее выработки в нашей стране способствует развитию электротермического производства фосфора и на его основе кислоты, солей, кормовых средств и удобрений. Мощные электростанции создаются в различных экономических районах страны и эти электростанции связаны между собой высоковольтными линиями электропередачи ( ЛЭП) и объединены в общие энергетические системы, что обеспечивает надежность энергетической базы этого производства. [12]
Феррофосфор-куски зернистого металла, очищенные от примеси шлака. Состоит из фосфидов железа. Получается как побочный продукт в результате сплавления железа и фосфора при электротермическом производстве фосфора . [13]
В производстве фосфорных кислот основным сырьем являются фосфор, воздух и вода. Качество воздуха и воды обычно не контролируется, хотя это не всегда правильно, так как вместе с воздухом, и особенно с водой, в пищевую фосфорную кислоту могут попасть нежелательные ( токсичные) примеси. Качество фосфора как стандартного продукта гарантируется его поставщиками, но потребитель может контролировать качество поступающего фосфора. Однако современная технология электротермического производства фосфора настолько совершенна, что колебания показателей его качества весьма незначительны; небольшие изменения его состава не отражаются на технологии фосфорной кислоты. [15]
Источник