Получение ацетилена двумя способами

Ацетилен, получение, свойства, химические реакции

Преимущества

Упоминание о газовой сварке моментально наводит на мысли об ацетилене. Действительно для этого процесса чаще всего применяют этот газ. Он в сочетании с кислородом обеспечивает самую высокую температуру горения пламени. Но в последние годы из-за развития различных видов сварки использование этого вида соединения металлов несколько снизилось. Более того, в некоторых отраслях произошел полный отказ от применения этих технологий. Но для выполнения определенного вида ремонтных работ она до сих пор остается незаменима.

Применение ацетилена позволяет получить следующие преимущества:

  • максимальная температура пламени;
  • существует возможность генерации ацетилена непосредственно на рабочем месте или приобретения его в специальных емкостях;
  • довольно низкая стоимость, в сравнении с другими горючими газами.

Вместе с тем, у ацетилена есть и определенные недостатки, которые ограничивают его использование. Самый главный — это взрывоопасность. При работе с этим газом необходимо строго соблюдать меры безопасности. В частности, работы должны выполняться в хорошо проветриваемом помещении. При нарушении режимов работы возможно появление некоторых дефектов, например, пережогов.

Технология и режимы сварки

Ацетилено — кислородные смеси применяют для соединения деталей из углеродистых и низколегированных сталей. Например, этот метод широко применяют для создания неразъемных соединений трубопроводов. Например, труб диаметром 159 мм с толщиной стенок не более 8 мм. Но существуют и некоторые ограничения, так соединение таким методом сталей марок 12×2M1, 12×2МФСР недопустимо.

Сварка при помощи ацетилена

Пламя при ацетиленовой сварке

Выбор параметров режима

Для приготовления смеси необходимой для соединения металлов используют формулу 1/1,2. При обработке заготовок из легированных сталей сварщик должен отслеживать состояние пламени. В частности, нельзя допускать переизбытка ацетилена.

Расход смеси с формулой кислород/ацетилен составляет 100-130 дм3/час на 1 мм толщины. Мощность пламени регулируют с помощью горелки, которые подбирают в зависимости от используемого материала, его характеристик, толщины и пр

Для выполнения сварки при помощи ацетилена применяют сварочную проволоку. Ее марка должна соответствовать марке сталей свариваемых деталей. Диаметр проволоки определяют в зависимости от толщины свариваемого металла.

Для удобства технологов и непосредственно сварщиков существует множество таблиц, на основании которых можно довольно легко выбрать сварочный режим. Для этого необходимо знать следующие параметры:

  • толщину стенки свариваемых заготовок;
  • вид сварки — левый, правый;

На основании этого можно определить диаметр присадочной проволоки и подобрать расход ацетилена. К примеру, толщина составляет 5-6 мм, для выполнения работ будет использован наконечник № 4. То есть на основании табличных данных диаметр проволоки будет составлять для левой сварки 3,5 мм, для правой 3. Расход ацетилена в таком случае будет составлять при левом способе 60 -780 дм3/час, при правом 650-750 дм3/час.

Сварку выполняют небольшими участками по 10-15 мм. Работа производится в следующей последовательности. На первом этапе выполняют оплавление кромок. После этого выполняют наложение корня шва. По окончании формирования корня, можно продолжать сварку далее. Если толщина заготовок составляет 4 мм то сварку допустимо выполнять в один слой. Если толщина превышает указанную, то необходимо наложить второй. Его укладывают только после того, как выполнен корень шва по всей заданной длине.

Читайте также:  Способы нагадить кому то

Для улучшения качества сварки допускается выполнение предварительного нагрева. То есть будущий сварной стык прогревают с помощью горелки. Если принят за основу такой способ, то прогрев надо выполнять после каждой остановки заново.

Выполнение швов газом может выполняться в любом пространственном положении. Например, при выполнении вертикального шва существуют свои особенности. Так, вертикальный шов должен исполняться снизу вверх.

При выполнении сварочных работ перерывы в работе недопустимы, по крайней мере до окончания всей разделки шва. При остановке в работе горелку необходимо отводить медленно, в противном случае, могут возникнуть дефекты шва — раковины и поры. Интересная особенность существует при сварке трубопроводов, в ней не допустим сквозняк и поэтому концы труб необходимо заглушать.

Карбидный способ

Можно из метана получить ацетилен или в качестве исходного вещества взять карбид кальция. Процесс протекает при обычных условиях. При взаимодействии карбида кальция с водой образуется не только ацетилен, но и гидроксид кальция (гашеная известь). Признаками протекания химического процесса будет выделение газа (шипение), а также изменение окраски раствора при добавлении фенолфталеина на малиновый цвет.

При применении в качестве исходного вещества технического карбида, имеющего различные примеси, в процессе взаимодействия наблюдается неприятный запах. Он объясняется присутствием в продуктах реакции таких ядовитых газообразных веществ, как фосфин, сероводород.

Как осуществляется крекинг

Осуществить превращения «метан — ацетилен» можно несколькими способами. В первом случае природный газ пропускают через предварительно раскаленные электроды. При этом температура может доходить до 1600 °С. После нагрева происходит быстрое охлаждение. Второй способ основан на использовании тепла, которое образуется в результате частичного сгорания ацетилена.

Уравнения реакций «метан — ацетилен» записываются следующим образом:

  1. В I случае: 2СН4 = С2Н2 + 3Н2.
  1. Во II случае: 6СН4 + 4О2 = С2Н2 + 8Н2 + 3СО + СО2 + 3Н2О.

Специалисты не рекомендуют использовать для хранения ацетилена баллоны, оснащенные вентилями из бронзы. Ведь в состав этого сплава входит медь. Так как ацетилен химически активен, он может вступить в реакцию с металлом. В результате этого образуются взрывоопасные соли.

Применение ацетилена при сварке

Ацетилен – основной горючий газ, используемый при газовой сварке, а также широко применяется для газовой резки (кислородной резки). Температура ацетилено-кислородного пламени может достигать 3300°C. Благодаря этому ацетилен по сравнению с более доступными горючими газами (пропан-бутаном, природным газом и др.) обеспечивает более высокое качество и производительность сварки.

Получение в промышленности

Как получают ацетилен из метана в промышленных условиях? В настоящее время применяется только один метод – крекинг. В процессе получения ацетилена осуществляется разрыв связей -С-С. Происходит это в присутствии катализаторов и при воздействии достаточно высоких температур. Для получения используется метан – природный газ. Это недорогое и легкодоступное сырье. Именно по этой причине крекинг является наиболее обоснованным методом как в экономическом плане, так и в техническом.

Источник

Ацетилен, получение, свойства, химические реакции

Ацетилен, получение, свойства, химические реакции.

Ацетилен, C2H2 – органическое вещество класса алкинов, непредельный углеводород.

Ацетилен, формула, газ, характеристики:

Ацетилен (также – этин) – органическое вещество класса алкинов, непредельный углеводород , состоящий из двух атомов углерода и двух атомов водорода.

Химическая формула ацетилена C2H2. Структурная формула ацетилена СH≡CH. Изомеров не имеет.

Строение молекулы ацетилена:

Ацетилен имеет тройную связь между атомами углерода .

Ацетилен – бесцветный газ, без вкуса и запаха. Однако технический ацетилен содержит примеси – фосфористый водород , сероводород и пр., которые придают ему резкий запах.

Читайте также:  Народный способ лечения голубей

Легче воздуха . Плотность по сравнению с плотностью воздуха 0,9.

Очень горючий газ . Пожаро- и взрывоопасен.

Ацетилен относится к числу немногих соединений, горение и взрыв которых возможны в отсутствии кислорода или других окислителей.

Смеси ацетилена с воздухом взрывоопасны в очень широком диапазоне концентраций. Взрывоопасность уменьшается при разбавлении ацетилена другими газами, например азотом , метаном или пропаном .

Ацетилен требует большой осторожности при обращении. Может взрываться от удара, при нагреве до 500 °C или при сжатии выше 0,2 МПа при комнатной температуре. Струя ацетилена, выпущенная на открытый воздух , может загореться от малейшей искры, в том числе от разряда статического электричества с пальца руки. Для хранения ацетилена используются специальные баллоны , заполненные пористым материалом, пропитанным ацетоном. В них ацетилен хранится в виде раствора с ацетоном.

Малорастворим в воде . Очень хорошо растворяется в ацетоне. Хорошо растворяется в других органических веществах (бензине, бензоле и пр.)

Ацетилен обладает незначительным токсическим действием.

Физические свойства ацетилена:

Наименование параметра: Значение:
Цвет без цвета
Запах без запаха
Вкус без вкуса
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) газ
Плотность (при 20 °C и атмосферном давлении 1 атм.), кг/м 3 1,0896
Плотность (при 0 °C и атмосферном давлении 1 атм.), кг/м 3 1,173
Температура плавления, °C -80,8
Температура кипения, °C -80,55
Тройная точка, °C 335
Температура самовоспламенения, °C 335
Давление самовоспламенения, МПа 0,14-0,16
Критическая температура*, °C 35,94
Критическое давление, МПа 6,26
Взрывоопасные концентрации смеси газа с воздухом, % объёмных от 2,1 до 100
Удельная теплота сгорания, МДж/кг 56,9
Температура пламени, °C 3150-3200
Молярная масса, г/моль 26,038

* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.

Химические свойства ацетилена:

Химические свойства ацетилена аналогичны свойствам других представителей ряда алкинов. Поэтому для него характерны следующие химические реакции:

  1. 1. галогенирование ацетилена:

СH≡CH + Br2 → CHBr=CHBr (1,2-дибромэтен);

Реакция протекает стадийно с образованием производных алканов .

В ходе данной реакции ацетилен обесцвечивает бромную воду .

  1. 2. гидрогалогенирование ацетилена:
  1. 3. гидратация ацетилена (реакция Михаила Григорьевича Кучерова, 1881 г.):
  1. 4. тримеризация ацетилена (реакция Николая Дмитриевича Зелинского, 1927 г.):

3СH≡CH → C6H6 (бензол) (kat = активированный уголь, t o = 450-500 о С).

Реакция тримеризации ацетилена является частным случаем реакции полимеризации ацетилена и происходит при пропускании ацетилена над активированным углем при температуре 450-500 о С.

  1. 5. димеризация ацетилена:

СH≡CH + СH≡CH → CH2=CH-С≡CH (винилацетилен) (kat = водный раствор CuCl и NH4Cl).

Реакция димеризации ацетилена является частным случаем реакции полимеризации ацетилена.

  1. 6. горение ацетилена:

Ацетилен горит белым ярким пламенем.

  1. 7. окисление ацетилена.

Протекание реакции и её продукты определяются средой, в которой она протекает.

  1. 8. восстановления ацетилена:

СH≡CH + Н2 → C2H4 ( этилен ) (kat = Ni, Pd или Pt, повышенная t o );

СH≡CH + 2Н2 → C2H6 ( этан ) (kat = Ni, Pd или Pt, повышенная t o ).

Получение ацетилена в промышленности и лаборатории. Химические реакции – уравнения получения ацетилена:

Ацетилен в лабораторных условиях получается в результате следующих химических реакций:

  1. 1. действия воды на карбид кальция:
  1. 2. дегидрирования метана:
  1. 3. дегидрирования этилена:

Ацетилен в промышленности получают следующими способами и методами:

  1. 4. карбидным методом:

Сначала получают известь из карбоната кальция.

CаСО3 → CаО + CO2. (t o = 900-1200 о С).

Затем получают карбид кальция , сплавляя оксид кальция и кокс в электро печах при температуре 2500-3000 °С.

CаО + 3С → CаС2 + CO. (t o = 2500-3000 о С).

Далее карбид кальция обрабатывают водой по известной реакции.

Читайте также:  Способы завоевания власти лениным

В итоге получается ацетилен высокой чистоты – 99,9 %.

  1. 5. высокотемпературным крекингом метана:

Высокотемпературный крекинг метана осуществляется по известной реакции дегидирования метана в электродуговых печах при температуре 2000-3000 °С и напряжении между электродами 1000 В. Выход ацетилена составляет 50 %.

  1. 6. различными способами пиролиза метана:

Разновидностью высокотемпературного крекинга метана являются регенеративный пиролиз (Вульф-процесс), окислительный пиролиз (Заксе-процесс или BASF-процесс), гомогенный пиролиз, пиролиз в среде низкотемпературной плазмы .

Так, в ходе регенеративного пиролиза сначала сжигают метан и разогревают насадку печи до 1350-1400 °С. Затем через разогретую насадку на доли секунды пропускают метан, в результате образуется ацетилен.

В ходе окислительного пиролиза метан смешивают с кислородом и сжигают. Образующееся тепло служит для нагрева остатка метана до 1600 °С, который дегидрирует в ацетилен. Выход ацетилена составляет 30-32 %.

В ходе гомогенного пиролиза метан и кислород сжигают в печи при температуре 2000 °С. Затем предварительно нагретый до 600 °С остаток метана пропускают через печь , в результате образуется ацетилен.

При пиролизе в среде низкотемпературной плазмы метан нагревают струей ионизированного газа ( аргона или водорода ).

Применение и использование ацетилена:

– как сырье в химической промышленности для производства уксусной кислоты, этилового спирта, растворителей , пластических масс, синтетических каучуков , ароматических углеводородов,

– для газовой сварки и резки металлов,

– для получения технического углерода ,

– как источник очень яркого, белого света в автономных светильниках , где он получается реакцией карбида кальция и воды.

Взрывоопасность ацетилена и безопасность при обращении с ним:

Ацетилен обладает взрывоопасными свойствами.

Поэтому обращение с ацетиленом требует строгого соблюдения правил техники безопасности.

Ацетилен горит и взрывается даже в отсутствии кислорода и других окислителей.

Смеси ацетилена с воздухом взрывоопасны в очень широком диапазоне концентраций.

Струя ацетилена, выпущенная на открытый воздух, может загореться от малейшей искры, в том числе от разряда статического электричества с пальца руки.

Взрываемость ацетилена зависит от множества факторов: давления, температуры, чистоты ацетилена, содержания в нем влаги, наличия катализаторов и пр. веществ и ряда других причин.

Температура самовоспламенения ацетилена при нормальном – атмосферном давлении колеблется в пределах 500-600 °C. При повышении давления существенно уменьшается температура самовоспламенения ацетилена. Так, при давлении 2 кгс/см 2 (0,2 МПа, 1,935682 атм.) температура самовоспламенения ацетилена равна 630 °C. А при давлении 22 кгс/см 2 (2,2 МПа, 21,292502 атм.) температура самовоспламенения ацетилена равна 350 °С.

Присутствие в ацетилене частиц различных веществ увеличивают поверхность его контакта и тем самым снижает температуру самовоспламенения при атмосферном давлении. Например, активированный уголь снижает температуру самовоспламенения ацетилена до 400 °С, гидрат оксида железа (ржавчина) – до 280-300 °С, железная стружка – до 520 °С, латунная стружка – до 500-520 °С, карбид кальция – до 500 °С, оксид алюминия – до 490 °С, медная стружка – 460 °С, оксид железа – 280 °С, оксид меди – до 250 °С.

Взрывоопасность ацетилена уменьшается при разбавлении ацетилена другими газами , например азотом, метаном или пропаном.

При определенных условиях ацетилен реагирует с медью , серебром и ртутью образуя взрывоопасные соединения. Поэтому при изготовлении ацетиленового оборудования (например, вентилей баллонов) запрещается применять сплавы , содержащие более 70 % Cu.

Для хранения и перевозки ацетилена используются специальные стальные баллоны белого цвета (с красной надписью «А»), заполненные инертным пористым материалом (например, древесным углём). При этом ацетилен хранится и перевозится в указанных баллонах в виде раствора ацетилена в ацетоне под давлением 1,5-2,5 МПа.

Источник

Оцените статью
Разные способы