Показательные уравнения замена переменной способ решения

«Решение показательных уравнений с помощью замены переменных». 11-й класс

Разделы: Математика

Класс: 11

Цель урока: изучить способ решения показательных уравнений с помощью замены переменных.

– повторить известные способы решения показательных уравнений;

– показать алгоритм решения с помощью замены переменных;

– создавать условия для формирования навыков организации своей деятельности – самостоятельного поиска решения, самоконтроля;

– приучать к аккуратности выполнения записей в тетради и на доске;

– воспитывать умение работать в парах, взаимопомощь;

– воспитывать умение анализировать результаты своей деятельности;

– формировать умение сравнивать, выявлять закономерности, обобщать;

– формировать грамотную математическую речь;

– формировать умение применять знания в конкретной ситуации.

Преподавание ведется по учебнику А.Н.Колмогорова.

Сегодня мы продолжим знакомство с методами решения показательных уравнений.

Запишите тему урока: “Решение показательных уравнений”, но оставьте строчку, тему мы чуть позже уточним.

2. Актуализация знаний.

Устная работа с классом.

1) =32; 5) = – 25;
2) =81; 6) ;
3) =; 7) =;
4) =27; 8) .

3. Постановка проблемы.

Уравнения 1 – 7 решали, приводя их к виду или . Последнее уравнение решить таким способом не удается.

Обратите внимание: . Предложите способ решения. Нужно ввести новую переменную у = и решить полученное квадратное уравнение.

Какова будет наша цель сегодня? Научиться решать показательные уравнения с помощью замены переменных.

Уточним тему урока: “Решение показательных уравнений с помощью замены переменных”.

4. Изучение нового материала.

Пусть у = , причем у > 0.

Уравнение примет вид .

Решим это уравнение: = –1; = 5.

не удовлетворяет условию у > 0.

= 5; х = 1.

Решим уравнение .

Перепишем его в виде .

Далее решает ученик у доски с комментированием.

Пусть , причем у > 0.

3у – 8 = ; 3– 8у = 3; 3– 8у – 3 = 0;

Решим это уравнение: = –; = 3.

не удовлетворяет условию у > 0.

= 3; х = 1.

Решим уравнение .

Почему не удается решить? Нельзя привести степени к одному основанию.

Читайте также:  Способы индивидуализации процесса обучения

Перепишем уравнение в виде

Разделим обе части уравнения на : .

Далее решает у доски ученик с комментированием.

Пусть у =, причем у > 0.

Уравнение примет вид .

.

Решим это уравнение: = 1; =.

= 1; х = 0. = ; х = 1.

Можно было делить на ? Что изменилось бы в решении? Ввели бы обозначение у =.

5. Первичное закрепление изученного материала.

Ученики работают в парах, более сильные ребята помогают соседям.

Два ученика работают за крыльями доски.

.

Перепишем в виде .

Пусть , причем у > 0.

у += 12;

+ 27 = 12у;

– 12у +27 = 0.

Решим это уравнение: = 3; = 9.

= 3; х = 1. = 9; х = 2.

Ответ: 1; 2.

Разделим обе части уравнения на : .

Пусть у =, причем у > 0.

Уравнение примет вид .

Решим это уравнение: = – 1; =.

не удовлетворяет условию у > 0.

= ; = ; = 2; х = .

Ответ: .

6. Самостоятельная работа.

Чтобы проверить, как усвоен новый материал, выполните самостоятельную работу.

1) ;

2) ;

3) .

По окончании работы ученики самостоятельно проверяют решение по образцу (раздаточный материал), фиксируя места, где допущены ошибки.

7. Итог урока.

  • Обсуждение результатов самостоятельной работы.
  • Кто выполнил правильно все задания?
  • Кто допустил ошибки в первом (втором, третьем) задании? Какие?
  • Повторим, какие приемы использовали при решении показательных уравнений.
  • Оцените свою работу на уроке.
  • Вам предстоит еще раз применить полученные знания при выполнении домашнего задания: № 464(в,г), 470(в,г), 166(г) (стр. 299).

Источник

Замена переменной в решении показательных уравнений. Примеры.

Сначала — как обычно. Переходим к одному основанию. К двойке.

4 х = (2 2 ) х = 2 2х

2 2х — 3·2 х +2 = 0

А вот тут и зависнем. Предыдущие приёмы не сработают, как ни крутись. Придётся доставать из арсенала ещё один могучий и универсальный способ. Называется он замена переменной.

Суть способа проста до удивления. Вместо одного сложного значка (в нашем случае — 2 х ) пишем другой, попроще (например — t). Такая, казалось бы, бессмысленная замена приводит к потрясным результатам!) Просто всё становится ясным и понятным!

Тогда 2 2х = 2 х2 = (2 х ) 2 = t 2

Заменяем в нашем уравнении все степени с иксами на t:

Ну что, осеняет?) Квадратные уравнения не забыли ещё? Решаем через дискриминант, получаем:

Тут, главное, не останавливаться, как бывает. Это ещё не ответ, нам икс нужен, а не t. Возвращаемся к иксам, т.е. делаем обратную замену. Сначала для t1:

Один корень нашли. Ищем второй, из t2:

Гм. Слева 2 х , справа 1. Неувязочка? Да вовсе нет! Достаточно вспомнить (из действий со степенями, да. ), что единичка — это любое число в нулевой степени. Любое. Какое надо, такое и поставим. Нам нужна двойка. Значит:

Вот теперь всё. Получили 2 корня:

При решении показательных уравнений в конце иногда получается какое-то неудобное выражение. Типа:

Из семёрки двойка через простую степень не получается. Не родственники они. Как тут быть? Кто-то, может и растеряется. А вот человек, который прочитал на этом сайте тему «Что такое логарифм?», только скупо улыбнётся и запишет твёрдой рукой совершенно верный ответ:

Такого ответа в заданиях «В» на ЕГЭ быть не может. Там конкретное число требуется. А вот в заданиях «С» — запросто.

В этом уроке приведены примеры решения самых распространённых показательных уравнений. Выделим основное.

1. Первым делом смотрим на основания степеней. Соображаем, нельзя ли их сделать одинаковыми.Пробуем это сделать, активно используя действия со степенями. Не забываем, что числа без иксов тоже можно превращать в степени!

2. Пробуем привести показательное уравнение к виду, когда слева и справа стоят одинаковые числа в каких угодно степенях. Используем действия со степенями и разложение на множители.То что можно посчитать в числах — считаем.

3. Если второй совет не сработал, пробуем применить замену переменной. В итоге может получиться уравнение, которое легко решается. Чаще всего — квадратное. Или дробное, которое тоже сводится к квадратному.

4. Для успешного решения показательных уравнений надо степени некоторых чисел знать «в лицо».

Как обычно, в конце урока вам предлагается немного порешать.) Самостоятельно. От простого — к сложному.

Решить показательные уравнения:

2 х+3 — 2 х+2 — 2 х = 48

2 х — 2 0,5х+1 — 8 = 0

Найти произведение корней:

Ну, тогда сложнейший пример (решается, правда, в уме. ):

7 0.13х + 13 0,7х+1 + 2 0,5х+1 = -3

Что, уже интереснее? Тогда вот вам злой пример. Вполне тянет на повышенную трудность. Намекну, что в этом примере спасает смекалка и самое универсальное правило решения всех математических заданий.)

2 5х-1 · 3 3х-1 · 5 2х-1 = 720 х

Пример попроще, для отдыха):

И на десерт. Найти сумму корней уравнения:

х·3 х — 9х + 7·3 х — 63 = 0

Да-да! Это уравнение смешанного типа! Которые мы в этом уроке не рассматривали. А что их рассматривать, их решать надо!) Этого урока вполне достаточно для решения уравнения. Ну и, смекалка нужна. И да поможет вам седьмой класс (это подсказка!).

Ответы (в беспорядке, через точку с запятой):

1; 2; 3; 4; решений нет; 2; -2; -5; 4; 0.

Всё удачно? Отлично.

Есть проблемы? Не вопрос! В Особом разделе 555 все эти показательные уравнения решаются с подробными объяснениями. Что, зачем, и почему. Ну и, конечно, там имеется дополнительная ценная информация по работе со всякими показательными уравнениями. Не только с этими.)

Последний забавный вопрос на соображение. В этом уроке мы работали с показательными уравнениями.Почему я здесь ни слова не сказал про ОДЗ? В уравнениях — это очень важная штука, между прочим.

Источник

Читайте также:  Способы обобщения статистических данных
Оцените статью
Разные способы