- Подобные слагаемые
- Свойства сложения и умножения
- Подобные слагаемые
- Приведение подобных слагаемых
- Стандартный вид многочлена
- Как привести многочлен к стандартному виду
- Приведение подобных в многочлене
- Примеры приведения многочлена к стандартному виду
- Подобные слагаемые, их приведение, примеры
- Определение и примеры подобных слагаемых
- Приведение подобных слагаемых, правило, примеры
- Упрощение выражений
Подобные слагаемые
Свойства сложения и умножения
В буквенных выражениях числа могут быть обозначены буквами. Поэтому для всех буквенных выражений верны следующие равенства, выражающие свойства сложения и свойства умножения:
Свойства сложения | Свойства умножения |
---|---|
a + b = b + a (a + b) + c = a + (b + c) a + 0 = a a + (-a) = 0 a — b = a + (-b) | ab = ba (ab)c = a(bc) a(b + c) = ab + ac a = 1 · a —a = -1 · a a · 0 = 0 |
С помощью этих свойств можно упрощать буквенные выражения. Например:
Слагаемые 5a, 12a и -7a отличаются только числовыми множителями, такие слагаемые называются подобными.
Подобные слагаемые
Подобные слагаемые — это слагаемые, отличающиеся только числовыми множителями и имеющие одинаковую буквенную часть. Пользуясь свойствами сложения и умножения, можно упрощать выражения, содержащие подобные слагаемые. Например, упростим выражение:
Такое упрощение выражения называется приведением подобных слагаемых. В простых примерах промежуточные вычисления можно опустить:
Приведение подобных слагаемых
Приведение подобных слагаемых — это упрощение выражения, содержащего подобные слагаемые, путём их сложения.
Пример 1. Приведите подобные слагаемые:
Решение: Сначала надо найти в выражении подобные слагаемые:
4x | — | 3y | + | y | — | 2x | , |
теперь можно их сгруппировать, вынести общий множитель за скобки и привести подобные слагаемые:
Пример 2. Раскройте скобки и приведите подобные слагаемые:
Источник
Стандартный вид многочлена
Прежде чем приводить многочлен к стандартному виду необходимо вспомнить, что называют подобными одночленами.
Подобными одночленами называют одночлены, у которых одинаковый состав букв и их степеней.
Примеры подобных одночленов: ab и 2ab, −3c 2 d и c 2 d .
После того, как вы освежили знания по этим двум вопросам, вы готовы перейти к приведению многочлена к стандартному виду.
Как привести многочлен к стандартному виду
Чтобы привести многочлен к стандартному виду, нужно:
- Привести каждый одночлен многочлена к стандартному виду.
- Выполнить приведение подобных одночленов.
Рассмотрим пример. Привести к стандартному виду многочлен:
3ab + 2 · 3с 2 + 2ab − 8сс + xy =
- Вначале приведём к стандартному виду все одночлены внутри многочлена.
3ab + 2 · 3с 2 + 2ab − 8сс + xy = 3ab + 6с 2 + 2ab − 8 с 1 + 1 + xy =
= 3ab + 6с 2 + 2ab − 8с 2 + xy
Приведение подобных в многочлене
Теперь приведём подобные. Подобные члены подчеркнем одинаковым образом и разместим их друг за другом.
Помните, что при приведении одночленов складываются и вычитаются только их числовые коэффициенты.
3ab + 6с 2 + 2ab − 8с 2 + xy = 3ab + 2ab − 8с 2 + 6с 2 + xy = 5ab −2c 2 + xy
Запишем окончательное решение.
3ab + 2 · 3с 2 + 2ab − 8сс + xy = 3ab + 6с 2 + 2ab − 8 с 1 + 1 + xy =
= 3ab + 6с 2 + 2ab − 8с 2 + xy = 3ab + 2ab − 8с 2 + 6с 2 + xy = 5ab −2c 2 + xy
При раскрытии скобок не забывайте использовать правило знаков. При перемещении одночлена знак слева переносится вместе с ним.
Примеры приведения многочлена к стандартному виду
- 5a − 7b − (7a − 5b) = 5a − 7b − 7a + 5b = 5a − 7a − 7b + 5b = −2a − 2b
11a 2 + 7a + 9a 2 −5a = 11a 2 + 7a + 9a 2 − 5a = 11a 2 + 9a 2 + 7a − 5a = 20a 2 + 2a
13ab − 0,2xy − 2a · 5b + 6x · 0,2y + a(−3)b = 13ab − 0,2xy − 10ab + 1,2xy + (−3ab) = 13ab − 10ab − 3ab − 0,2xy + 1,2xy = 0 · ab + 1 · xy = 0 + xy = xy
Иногда приведение подобных в многочлене называют упрощением алгебраического выражения.
Источник
Подобные слагаемые, их приведение, примеры
Приведение подобных слагаемых является одним из наиболее употребимых тождественных преобразований. В этом разделе мы дадим определение термина, разберем, что обозначает словосочетание «приведение подобных слагаемых», рассмотрим основные правила выполнения действий и наиболее распространенные типы задач.
Определение и примеры подобных слагаемых
В большинстве учебных пособий тема подобных слагаемых разбирается после знакомства с буквенными выражениями, когда появляется необходимость проводить с ними различные преобразования.
Подобные слагаемые – это слагаемые, которые имеют одинаковую буквенную часть.
Слагаемые – это, как известно, составные элементы суммы. Это значит, что они могут присутствовать лишь в тех выражениях, которые представляют собой сумму. Буквенная часть – это одна или произведение нескольких букв, которые представляют собой переменные. Слагаемые с буквенной частью – это произведение некоторого числа и буквенной части. Здесь некоторое число также носит название числового коэффициента.
Рассмотрим сумму двух слагаемых 3 · a + 2 · a . В этой сумме слагаемые имеют одну и ту же буквенную часть, которая представлена буквой a . Согласно определению, эти два слагаемых являются подобными. Числа 2 и 3 в данном случае являются числовыми коэффициентами.
Рассмотрим сумму 5 · x · y 3 · z + 12 · x · y 3 · z + 1 . Здесь подобными являются слагаемые 5 · x · y 3 · z и 12 · x · y 3 · z , которые имеют одинаковую буквенную часть x · y 3 · z . Следует обратить внимание на то, что в буквенной части присутствует степень y 3 . Наличие степени не нарушает данное выше определение буквенной части в связи с тем, что y 3 по сути является произведением y · y · y .
Числовые коэффициенты 1 и − 1 в случае подобных слагаемых часто не записываются, но подразумеваются. К примеру, сумма 3 · z 5 + z 5 − z 5 состоит из трех слагаемых 3 · z 5 , z 5 и − z 5 , которые являются подобными. Здесь z 5 – это одинаковая буквенная часть, 3 , 1 и — 1 – коэффициенты.
Если слагаемые в буквенном выражении не имеют буквенной части, то они также являются подобными. Например, сумма 5 + 7 · x − 4 + 2 · x + y представлена 4 подобными слагаемыми, два из которых ( 5 и — 4 ) не имеют буквенной части.
Буквенная часть может быть представлена не только произведением букв, но также и произвольным буквенным выражением. Например:
3 · 5 · a — 2 · 5 · a + 12 · 5 · a .
Здесь общей буквенной частью подобных слагаемых является выражение 5 · a .
По аналогии можно выделить подобные слагаемые в выражении 4 · ( x 2 + x − 1 / x ) − 0 , 5 · ( x 2 + x − 1 / x ) − 1 . Это будут слагаемые с одинаковой буквенной частью ( x 2 + x − 1 / x ) .
Обобщим изложенные выше утверждения и дадим еще одно определение подобных слагаемых.
Подобные слагаемые – это слагаемые в буквенном выражении, которые имеют одинаковую буквенную часть, а также слагаемые, которые не имеют буквенной части, если под буквенной частью понимать любое буквенное выражение.
Числовые коэффициенты подобных слагаемых могут быть равны, тогда мы говорим о том, что подобные слагаемые одинаковые. Если же числовые коэффициенты различаются, то подобные слагаемые будут разными.
Возьмем для примера выражение 2 · x · y + 3 · y · x и рассмотрим такой нюанс: являются ли слагаемые 2 · x · y и 3 · y · x подобными. В задачах этот вопрос может иметь следующую формулировку: одинаково ли буквенное выражение части x · y и y · x указанных слагаемых? Буквенные множители в приведенном примере имеют различный порядок, что в свете данного выше определения не делает их подобными.
Однако, если использовать переместительное свойство умножения, то можно изменить порядок множителей, не влияя на результат умножения. Это позволяет нам переписать выражение 2 · x · y + 3 · y · x можно переписать в виде 2 · x · y + 3 · x · y . Тогда слагаемые будут подобны.
К слову, в некоторых источниках при нестрогом отношении к вопросу, слагаемые из примера могут называться подобными. Но лучше не допускать таких неточностей в трактовках.
Приведение подобных слагаемых, правило, примеры
Под преобразованием выражений, которые содержат подобные слагаемые, подразумевается проведение сложения этих слагаемых. Проводится это действие обычно в три этапа:
- перестановка слагаемых таким образом, чтобы подобные слагаемые оказались рядом;
- вынесение за скобки буквенной части;
- вычисление значения числового выражения, которое осталось в скобках.
Приведем пример таких вычислений.
Возьмем выражение 3 · x · y + 1 + 5 · x · y . Выделим подобные слагаемые и переставим их друг к другу: 3 · x · y + 1 + 5 · x · y = 3 · x · y + 5 · x · y + 1 .
Теперь вынесем за скобки буквенную часть: x · y · ( 3 + 5 ) + 1 .
Нам осталось вычислить значение выражения, которое записано в скобках: x · y · ( 3 + 5 ) + 1 = x · y · 8 + 1 .
Обычно числовой коэффициент записывается перед буквенной частью: x · y · 8 + 1 = 8 · x · y + 1 .
Описанные три шага для экономии времени записывают в виде правила приведения подобных слагаемых. Согласно правило для того, чтобы привести подобные слагаемые, необходимо сложить их коэффициенты, а затем умножить полученный результат на буквенную часть при ее наличии.
Запишем более короткий вариант решения выражения, рассмотренного выше. В выражении 3 · x · y + 1 + 5 · x · y коэффициентами подобных слагаемых 3 · x · y и 5 · x · y являются числа 3 и 5 . Сумма коэффициентов равна 8 . Умножим ее на буквенную часть и получим: 3 · x · y + 1 + 5 · x · y = 8 · x · y + 1 .
Приведите подобные слагаемые: 0 , 5 · x + 1 2 + 3 , 5 · x − 1 4 .
Решение
Начнем с приведения подобных слагаемых 0 , 5 · x и 3 , 5 · x . Используя правило, сложим их коэффициенты 0 , 5 + 3 , 5 = 4 . Умножим буквенную часть на полученный результат 4 · x .
Теперь займемся приведением подобных слагаемых без буквенной части: 1 2 + ( — 1 4 ) = 1 2 — 1 4 = 1 4 . Вспомним правило сложения чисел с разными знаками и выполним вычитание обыкновенных дробей. Получим: 1 2 + ( — 1 4 ) = 1 2 — 1 4 = 1 4
Итог: 0 , 5 · x + 1 2 + 3 , 5 · x − 1 4 = 4 · x + 1 4 .
Приведем краткую запись решения: 0 , 5 · x + 1 2 + 3 , 5 · x − 1 4 = ( 0 , 5 · x + 3 , 5 · x ) + ( 1 2 − 1 4 ) = 4 · x + 1 4 .
Ответ: 0 , 5 · x + 1 2 + 3 , 5 · x − 1 4 = 4 · x + 1 4 .
Особо хочется отметить тот факт, что приведение подобных слагаемых базируется на распределительном свойстве умножения относительно сложения, которое можно выразить равенством a · ( b + c ) = a · b + a · c . Когда мы выполняем приведение подобных слагаемых, мы используем это равенство справа налево, т.е. в виде a · b + a · c = a · ( b + c ) .
Источник
Упрощение выражений
Одно из самых распространенных заданий в алгебре звучит так: «Упростите выражение». Сделать это можно используя один из ниже перечисленных приемов, но чаще всего тебе потребуется их комбинация.
Приведение подобных слагаемых.
Это самый простой из приемов. Подобными называются те слагаемые, у которых одинаковая буквенная часть. Например, подобными будут выражения 5а и -6а; -3ху и 3ух; 2 и 10. Так вот. Складывать можно только подобные слагаемые; если буквенная часть у слагаемых различна, то такие слагаемые складывать уже нельзя. Согласись, если в жизни мы будем складывать яблоки с гвоздями, то у нас какая-то дичь получится) В математике точно так же.
Для примера упростим такое выражение:
Подобные слагаемые я выделю разными цветами и посчитаю. Кстати, знак перед слагаемым относится к этому слагаемому.
Как видишь, больше одинаковых буквенных частей нет. Выражение упрощено.
Умножение одночленов и многочленов.
Не буду спорить — числа ты умножать умеешь. А если к ним добавятся буквы, степени, скобки?
Одночлен — это выражение, состоящее из произведения чисел, букв, степеней, причем необязательно должно быть всё сразу. Удивительно, но просто число 5 тоже является одночленом, так же как и одинокая переменная х.
При умножении одночленов используют правила умножения степеней.
Перемножим три одночлена:
Разными цветами выделю то, что буду последовательно перемножать.
Многочлен — это сумма одночленов.
Чтобы умножить одночлен на многочлен выражение за скобками умножить на каждое слагаемое в скобках. Подробности в следующем примере.
Осталось вспомнить умножение многочлена на многочлен. При таком вот умножении надо каждое слагаемое в первых скобках умножить на каждое слагаемое во вторых скобках, результаты сложить или вычесть в зависимости от знаков слагаемых.
Вынесение общего множителя за скобки.
Разбираться будем на примере.
Дано такое выражение:
Что общего у этих двух слагаемых? Правильно, в них обоих присутствует множитель x. Он и будет являться общим множителем, который надо вынести за скобку.
Возьмем другой пример.
Оба числа в слагаемых делятся на 2, значит число 2 — общий множитель. Но еще в этих одночленах есть одинаковая буква а — одна в первой степени, другая — во второй. Берем ее в меньшей степени, т.е. в первой, — это и будет второй общий множитель. В общем, получится вот такая запись:
Ну и давайте третий пример, только уже без комментариев.
Проверить правильность вынесения общего множителя за скобки можно путем раскрытия скобок (умножением).
Разложение многочлена на множители способом группировки.
Если надо разложить многочлен на множители, то способ группировки тебе пригодится.
Сгруппировать выражения можно лишь путем вынесения общих множителей за скобку. Но сделать это нужно так, чтобы скобки в итоге получились одинаковые. Зачем? Да затем, чтобы потом эти скобки вынести за другие скобки.
На примере будет яснее)
Беру пример самый простой, чисто для понимания того, что надо делать.
В первых двух слагаемых общим множителем является переменная а: выносим ее за скобку. Во вторых двух слагаемых общим множителем является число 6. Его тоже выносим за скобки.
Видишь получились две одинаковые скобки? Теперь они являются общим множителем. Выносим их за скобку и получаем милое произведение двух скобок:
Разложение квадратного трехчлена на множители.
Пусть дан квадратный трехчлен:
Чтобы разложить его на множители надо решить квадратное уравнение
Далее корни уравнения х1 и х2 подставить в следующую формулу:
Возьмем вот такой трехчлен:
Найдем корни квадратного уравнения.
Подставим их в формулу для разложения квадратного трехчлена на множители:
Что-то слишком много минусов во второй скобке. Чуть-чуть преобразуем ее:
Еще могут тебе пригодится:
— умение сокращать дроби;
А вот такие задания могут тебе встретится на экзамене.
2) Найти значение выражения при заданных значениях переменных:
3) Найти значение выражения при заданных значениях переменных:
Подобных заданий много — их все не уместишь)
Источник