- Биология. 11 класс
- Для чего нам нужны знания об эволюции?
- Спираль эволюции живых организмов Земли
- Почему идентичность способов хранения передачи
- Наследственная информация: хранение и передача. Генетический код. Цепочка ДНК
- Что такое наследственная информация?
- Функции ДНК
- Состав нуклеиновых кислот
- Уровни организации наследственной информации
- Каков генетический код человека?
- Как передается генетический код?
- Реализация наследственной информации
- Принцип комплементарности
- РНК и его виды
- Репарация поврежденной молекулы ДНК
- Почему происходят мутации?
Биология. 11 класс
Эволюция живых организмов
Для чего нам нужны знания об эволюции?
Решение проблемы возникновения жизни, ранних стадий формирования и развития биосферы, геологической истории Земли немыслимо вне общих представлений о биологической эволюции.
Вопросы происхождения человека, эволюции общественного поведения и коммуникаций у животных лежат на стыке биологических и социальных наук.
Эволюционное учение связывает в единое целое вопросы развития живой и неживой природы и соединяет их с вопросами истории развития человека.
В связи с этим необходимо понять процесс исторического развития живой материи от сравнительно простых форм жизни к более высокоорганизованным формам, выявить взаимосвязь этого процесса с непрерывным приспособлением живого к постоянно меняющимся условиям окружающей среды, с преобразованием одних видов в другие.
Спираль эволюции живых организмов Земли
Цели и задачи
— формирование знаний об эволюционных представлениях на разных этапах развития общества.
— научиться определять логику биологической науки при обсуждении эволюционных идей основных положений учений К. Линнея, Ж.-Б. Ламарка; изучить основные закономерности эволюционного процесса; характеризовать взаимосвязь между теорией эволюции Ч. Дарвина и современными положениями синтетической теории эволюции;
— рассмотреть решение разного вида заданий по теме , развивать познавательный интерес и биологическое мышление.
Узнаем, научимся, сможем
— об эволюции – как процессе исторического развития живой материи от простых форм жизни к более высокоорганизованным формам;
— о эволюционных учениях Ж. Кювье, К. Линнея и Ж.-Б. Ламарка;
— о роли Ч. Дарвина в формировании современной научной картины мира;
— характеризовать научные взгляды Ж. Кювье, К. Линнея и Ж.-Б. Ламарка;
— анализировать и оценивать различные гипотезы происхождения жизни;
— аргументировать свою точку зрения в ходе дискуссии по обсуждению гипотез сущности и происхождения жизни;
— выполнять задания разного вида по теме;
— объяснять сущность эволюционного подхода к изучению живых организмов; объяснять, почему идентичность способов хранения, передачи и реализации наследственной информации свидетельствует о единстве происхождения всего живого.
Источник
Почему идентичность способов хранения передачи
Подробное решение параграф § 13 по биологии для учащихся 10 класса, авторов Сивоглазов В.И., Агафонова И.Б., Захарова Е.Т. 2014
Какова структура белков и нуклеиновых кислот?
Длинные белковые цепи построены всего из 20 различных типов аминокислот, имеющих общий план строения, но отличающихся друг от друга по строению радикала. Соединяясь, молекулы аминокислот образуют так называемые пептидные связи. Закручиваясь в виде спирали, белковая нить приобретает более высокий уровень организации — вторичную структуру. И наконец, спираль полипептида сворачивается, образуя клубок (глобулу). Именно такая третичная структура белка и является его биологически активной формой, обладающей индивидуальной специфичностью. Однако для ряда белков третичная структура не является окончательной. Вторичная структура – это полипептидная цепь, закрученная в спираль. Для более прочного взаимодействия во вторичной структуре, происходит внутримолекулярное взаимодействие с помощью –S–S– сульфидных мостиков между витками спирали. Это обеспечивает прочность данной структуры. Третичная структура – это вторичная спиральная структура закручена в глобулы – компактные комочки. Эти структуры обеспечивают максимальную прочность и большую распространенность в клетках по сравнению с другими органическими молекулами.
ДНК – двойная спираль, РНК – одинарные цепи, состоящие из нуклеотидов.
Какие типы РНК вам известны?
и-РНК – синтезируется в ядре на матрице ДНК, является основой для синтеза белка.
т-РНК – транспорт аминокислот к месту синтеза белка – к рибосомам.
р-РНК – синтезируется в ядрышках ядра, и образует сами рибосомы клетки.
Все виды РНК синтезируются на матрице ДНК.
Где образуются субъединицы рибосом?
р-РНК – синтезируется в ядрышках ядра, и образует сами рибосомы клетки.
Какую функцию рибосомы выполняют в клетке?
Биосинтез белка – сборка белковой молекулы
Вопросы для повторения и задания
1. Вспомните полное определение понятия «жизнь».
Ф. Энгельс «Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка. И у неорганических тел может происходить подобный обмен веществ, который и происходит с течением времени повсюду, так как повсюду происходят, хотя бы и очень медленно, химические действия. Но разница заключается в том, что в случае неорганических тел обмен веществ разрушает их, в случае же органических тел он является необходимым условием их существования»
2. Назовите основные свойства генетического кода и поясните их значение.
Код триплетен и избыточен – из 4 нуклеотидов можно создать 64 разных триплетов, т.е. закодировать 64 аминокислоты, но в живом используется только 20.
Код однозначен – каждый триплет шифрует только одну аминокислоту.
Между генами имеются знаки препинания – знаки необходимы для правильной группировки в триплеты монотонной последовательности нуклеотидов, т.к. между триплетами нет знаков раздела. Роль разметки генов выполняют три триплета, не кодирующие никаких аминокислот – УАА, УАГ, УГА. Они означают конец белковой молекулы, как точка в предложении.
Внутри гена нет знаков препинания – поскольку генкод подобен языку; посмотрим это свойство на примере фразы:
ЖИЛ БЫЛ КОТ ТИХ БЫЛ СЕР МИЛ МНЕ ТОТ КОТ
Ген хранится в таком виде:
Смысл будет восстановлен, если правильно сгруппировать тройки, даже при отсутствии знаков препинания. Если же мы начнем группировку со второй буквы (второго нуклеотида), то получится такая последовательность:
ИЛБ ЫЛК ОТТ ИХБ ЫЛС ЕРМ ИЛМ НЕТ ОТК ОТ
Эта последовательность уже не имеет биологического смысла, и если она будет реализована, то получится чужеродное для данного организма вещество. Поэтому ген в цепи ДНК имеет строго фиксированное начало считывания и завершение.
Код универсален – един для всех живущих на Земле существ: у бактерии, грибов, человека одни и те же триплеты кодируют одни и те же аминокислоты.
3. Какие процессы лежат в основе передачи наследственной информации из поколения в поколение и из ядра в цитоплазму, к месту синтеза белка?
В основе передачи наследственной информации из поколения в поколение лежит мейоз. Транскрипция (от лат. transcription — переписывание). Информация о структуре белков хранится в виде ДНК в ядре клетки, а синтез белков происходит на рибосомах в цитоплазме. В качестве посредника, передающего информацию о строении определённой белковой молекулы к месту её синтеза, выступает информационная РНК. Трансляция (от лат. trans lation — передача). Молекулы иРНК выходят через ядерные поры в цитоплазму, где начинается второй этап реализации наследственной информации — перевод информации с «языка» РНК на «язык» белка.
4. Где синтезируются все виды рибонуклеиновых кислот?
Все виды РНК синтезируются на матрице ДНК.
5. Расскажите, где происходит синтез белка и как он осуществляется.
Этапы биосинтеза белка:
– Транскрипция (от лат. переписывание): процесс синтеза и-РНК на матрице ДНК, это перенос генетической информации с ДНК на РНК, транскрипция катализируется ферментом РНК-полимеразой. 1) Движения РНК-полимеразы – расплетание и восстановление двойной спирали ДНК, 2) Информация с гена ДНК – на и-РНК по принципу комплементарности.
– Соединение аминокислот с т-РНК: Строение т-РНК: 1) аминокислота ковалентно присоединяется т-РНК с помощью фермента т-РНК-синтетазы соответвственно антикодону, 2) К черешку листа т-РНК присоединяется определенная аминокислота
– Трансляция: рибосомный синтез белка из аминокислот на и-РНК, протекающий в цитоплазме. 1) Инициация — начало синтеза. 2) Элонгация — собственно синтез белка. 3) Терминация — узнавание стоп-кодона – окончание синтеза.
6. Рассмотрите рис. 45. Определите, в каком направлении — справа налево или слева направо — движется относительно и-РНК изображённая на рисунке рибосома. Докажите свою точку зрения.
и-РНК движется свела направо рибосома всегда движется в противоположном направлении, чтобы не мешать процессы, так как на одной нити и-РНК одновременно может сидеть несколько рибосом (полисома). А также показано в какую сторону движутся т-РНК – справа налево как и рибосома.
Подумайте! Вспомните!
1. Почему углеводы не могут выполнять функцию хранения информации?
Нет принципа комплементарности у углеводов, невозможно создавать генетические копии.
2. Каким образом реализуется наследственная информация о структуре и функциях небелковых молекул, синтезируемых в клетке?
Образование в клетках других органических молекул, таких как жиры, углеводы, витамины и т. д., связано с действием белков-катализаторов (ферментов). Например, ферменты, обеспечивающие синтез жиров у человека, «делают» человеческие липиды, а аналогичные катализаторы у подсолнечника — подсолнечное масло. Ферменты углеводного обмена у животных образуют резервное вещество гликоген, а у растений при избытке глюкозы синтезируется крахмал.
3. При каком структурном состоянии молекулы ДНК могут быть источниками генетической информации?
В состоянии спирализации, так как в таком состоянии ДНК входит в состав хромосом.
4. Какие особенности строения молекул РНК обеспечивают их функцию переноса информации о структуре белка от хромосом к месту его синтеза?
и-РНК – синтезируется в ядре на матрице ДНК, является основой для синтеза белка. Состав РНК – нуклеотиды комплементарные нуклеотидам ДНК, малый размер по сравнению с ДНК (что обеспечивает выход из ядерных пор).
5. Объясните, почему молекула ДНК не могла быть построена из нуклеотидов трёх типов.
Код триплетен и избыточен – из 4 нуклеотидов можно создать 64 разных триплетов (43), т.е. закодировать 64 аминокислоты, но в живом используется только 20. Это необходимо для замены любого нуклеотида, если вдруг в клетке его нет, то нуклеотид будет автоматически заменен на аналогичный, кодирующий эту же аминокислоту. Если бы было три нуклеотида, то 33 это будет всего 9 аминокислот, что невозможно, так как необходимо 20 аминокислот для любого организма.
6. Приведите примеры технологических процессов, в основе которых лежит матричный синтез.
Матрица экрана ноутбука
Матрица жидко-кристаллических экранов
7. Представьте, что в ходе некоего эксперимента для синтеза белка были взяты тРНК из клеток крокодила, аминокислоты мартышки, АТФ дрозда, иРНК белого медведя, необходимые ферменты квакши и рибосомы щуки. Чей белок был в итоге синтезирован? Объясните свою точку зрения.
Генетический код зашифрован в и-РНК, значит – белого медведя.
Источник
Наследственная информация: хранение и передача. Генетический код. Цепочка ДНК
После открытия принципа молекулярной организации такого вещества, как ДНК в 1953 году, начала развиваться молекулярная биология. Далее в процессе исследований ученые выяснили как рекомбенируется ДНК, ее состав и как устроен наш человеческий геном.
Каждый день на молекулярном уровне происходят сложнейшие процессы. Как устроена молекула ДНК, из чего она состоит? И какую роль играют в клетке молекулы ДНК? Расскажем подробно обо всех процессах, происходящих внутри двойной цепи.
Что такое наследственная информация?
Итак, с чего все начиналось? Е ще в 1868 нашли нуклеиновые кислоты в ядрах бактерий. А в 1928 г. Н. Кольцов выдвинул теорию о том, что именно в ДНК зашифрована вся генетическая информация о живом организме. Затем Дж. Уотсон и Ф. Крик нашли модель всем теперь известной спирали ДНК в 1953 году, за что заслужено получили признание и награду — Нобелевскую премию.
Что такое вообще ДНК? Это вещество состоит из 2 объединенных нитей, точнее спиралей. Участок такой цепочки с определенной информацией называется геном.
В ДНК хранится вся информация о том, что за белки будут формироваться и в каком порядке. Макромолекула ДНК — это материальный носитель невероятно объемной информации, которая записана строгой последовательностью отдельных кирпичиков — нуклеотидов. Всего нуклеотидов 4, они дополняют друг друга химически и геометрически. Этот принцип дополнения, или комплементарности, в науке будет описан позже. Это правило играет ключевую роль в кодировке и декодировании генетической информации.
Так как нить ДНК невероятно длинная, повторений в этой последовательности не бывает. У каждого живого существа собственная уникальная цепочка ДНК.
Функции ДНК
К функциям дезоксирибонуклеиновой кислоты относятся хранение наследственной информации и ее передача потомству. Без этой функции геном вида не мог бы сохраняться и развиваться на протяжении тысячелетий . Организмы, которые претерпели серьезные мутации генов, чаще не выживают или теряют способность производить потомство. Так происходит природная защита от вырождения вида.
Еще одна существенно важная функция — реализация хранимой информации. Клетка не может создать ни одного жизненно важного белка без тех инструкций, которые хранятся в двойной цепочке.
Состав нуклеиновых кислот
Сейчас уже достоверно известно, из чего состоят сами нуклеотиды — кирпичики ДНК. В их состав входят 3 вещества:
- Ортофосфорная кислота.
- Азотистое основание. Пиримидиновые основания — которые имеют только одно кольцо. К ним относят тимин и цитозин. Пуриновые основания, в составе которых присутствуют 2 кольца. Это гуанин и аденин.
- Сахароза. В составе ДНК — дезоксирибоза, В РНК — рибоза.
Число нуклеотидов всегда равно числу азотистых оснований. В специальных лабораториях расщепляют нуклеотид и выделяют из него азотистое основание. Так изучают отдельные свойства этих нуклеотидов и возможные мутации в них.
Уровни организации наследственной информации
Разделяют 3 уровня организации: генный, хромосомный и геномный. Вся информация, нужная для синтеза нового белка, содержится на небольшом участке цепочки — гене. То есть ген считается низший и самый простой уровень кодировки информации.
Гены, в свою очередь, собраны в хромосомы. Благодаря такой организации носителя наследственного материала группы признаков по определенным законам чередуются и передаются от одного поколения к другому. Надо заметить, генов в организме невероятно много, но информация не теряется, даже когда много раз рекомбенируется.
Разделяют несколько видов генов:
- по функциональному назначению выделяют 2 типа: структурные и регуляторные последовательности;
- по влиянию на процессы, протекающие в клетке, различают: супервитальные, летальные, условно летальные гены, а также гены мутаторы и антимутаторы.
Располагаются гены вдоль хромосомы в линейном порядке. В хромосомах информация сфокусирована не вразброс, существует определенный порядок. Существует даже карта, в которой отображены позиции, или локусы генов. Например, известно, что в хромосоме № 18 зашифрованы данные о цвете глаз ребенка .
А что же такое геном? Так называют всю совокупность нуклеотидных последовательностей в клетке организма. Геном характеризует целый вид, а не отдельную особь.
Каков генетический код человека?
Дело в том, что весь огромнейший потенциал человеческого развития заложен уже в период зачатия. Вся наследственная информация, которая необходима для развития зиготы и роста ребенка уже после рождения, зашифрована в генах. Участки ДНК и есть самые основные носители наследственной информации.
У человека 46 хромосом, или 22 соматические пары плюс по одной определяющей пол хромосоме от каждого родителя. Этот диплоидный набор хромосом кодирует весь физический облик человека, его умственные и физические способности и предрасположенность к заболеваниям. Соматические хромосомы внешне неразличимы, но несут они разную информацию, так как одна из них от отца, другая — от матери.
Мужской код отличается от женского последней парой хромосом — ХУ. Женский диплоидный набор — это последняя пара, ХХ. Мужчинам достается одна Х-хромосома от биологической матери, и затем она передается дочерям. Половая У-хромосома передается сыновьям.
Хромосомы человека значительно разнятся по размеру. Например, самая маленькая пара хромосом — №17. А самая большая пара — 1 и 3.
Диаметр двойной спирали у человека — всего 2 нм. ДНК настолько плотно закручена, что вмещается в маленьком ядре клетки, хотя ее длина будет достигать 2 метров, если ее раскрутить. Длина спирали — это сотни миллионов нуклеотидов.
Как передается генетический код?
Итак, какую роль играют в клетке молекулы ДНК при делении? Гены — носители наследственной информации — находятся внутри каждой клетки организма. Чтобы передать свой код дочернему организму, многие существа делят свое ДНК на 2 одинаковые спирали. Это называется репликацией. В процессе репликации ДНК расплетается и специальные «машины» дополняют каждую цепочку. После того как раздвоится генетическая спираль, начинает делиться ядро и все органеллы, а затем и вся клетка.
Но у человека другой процесс передачи генов — половой. Признаки отца и матери перемешиваются, в новом генетическом коде содержится информация от обоих родителей.
Хранение и передача наследственной информации возможны благодаря сложной организации спирали ДНК. Ведь как мы говорили, структура белков зашифрована именно в генах. Раз создавшись во время зачатия, этот код на протяжении всей жизни будет копировать сам себя. Кариотип (личный набор хромосом) не изменяется во время обновления клеток органов. Передача же информации осуществляется с помощью половых гамет — мужских и женских.
Передавать свою информацию потомству не способны только вирусы, содержащие одну цепочку РНК. Поэтому, чтобы воспроизводиться, им нужны клетки человека или животного.
Реализация наследственной информации
В ядре клетки постоянно происходят важные процессы. Вся информация, записанная в хромосомах, используется для построения белков из аминокислот. Но цепочка ДНК никогда не покидает ядро, поэтому здесь нужна помощь другого важного соединения = РНК. Как раз РНК способно проникнуть через мембрану ядра и взаимодействовать с цепочкой ДНК.
Посредством взаимодействия ДНК и 3 видов РНК происходит реализация всей закодированной информации. На каком уровне происходит реализация наследственной информации? Все взаимодействия происходят на уровне нуклеотидов. Информационная РНК копирует участок цепи ДНК и приносит эту копию в рибосому. Здесь начинается синтез из нуклеотидов новой молекулы.
Для того чтобы иРНК могла скопировать необходимую часть цепи, спираль разворачивается, а затем, по завершении процесса перекодировки, снова восстанавливается. Причем этот процесс может происходить одновременно на 2 сторонах 1 хромосомы.
Принцип комплементарности
Спирали ДНК состоят из 4 нуклеотидов — это аденин (А), гуанин (G), цитозин (С), тимин (T). Соединены они водородными связями по правилу комплементарности. Работы Э. Чаргаффа помогли установить это правило, так как ученый заметил некоторые закономерности в поведении этих веществ. Э. Чаргафф открыл, что молярное отношение аденина к тимину равно единице. И точно так же отношение гуанина к цитозину всегда равно единице.
На основе его работ генетики сформировали правило взаимодействия нуклеотидов. Правило комплементарности гласит, что аденин соединяется только с тимином, а гуанин — с цитозином. Во время декодирования спирали и синтеза нового белка в рибосоме такое правило чередования помогает быстро найти необходимую аминокислоту, которая прикреплена к транспортной РНК.
РНК и его виды
Что такое наследственная информация? Это последовательность нуклеотидов в двойной цепи ДНК. А что такое РНК? В чем заключается ее работа? РНК, или рибонуклеиновая кислота, помогает извлекать информацию из ДНК, декодировать ее и на основе принципа комплементарности создавать необходимые клеткам белки.
Всего выделяют 3 вида РНК. Каждая из них выполняет строго свою функцию.
- Информационная (иРНК), или еще ее называют матричная. Она заходит прямо в центр клетки, в ядро. Находит в одной из хромосом необходимый генетический материал для постройки белка и копирует одну из сторон двойной цепи. Копирование происходит снова по принципу комплементарности.
- Транспортная — это небольшая молекула, у которой на одной стороне декодеры-нуклеотиды, а на другой стороне соответствующие основному коду аминокислоты. Задача тРНК — доставить в «цех», то есть в рибосому, где синтезирует необходимую аминокислоту.
- рРНК — рибосомная. Она контролирует количество белка, который продуцируется. Состоит из 2 частей — аминокислотного и пептидного участка.
Единственное отличие при декодировании — у РНК нет тимина. Вместо тимина тут присутствует урацил. Но потом, в процессе синтеза белка, при ТРНК все равно правильно устанавливает все аминокислоты. Если же происходят какие-то сбои в декодировании информации, то возникает мутация.
Репарация поврежденной молекулы ДНК
Процесс восстановления поврежденной двойной цепочки называется репарацией. В процессе репарации поврежденные гены удаляются.
Затем необходимая последовательность элементов в точности воспроизводиться и врезается обратно в то же место на цепи, откуда было извлечено. Все это происходит благодаря специальным химическим веществам — ферментам.
Почему происходят мутации?
Почему некоторые гены начинают мутировать и перестают выполнять свою функцию — хранение жизненно необходимой наследственной информации? Это происходит из-за ошибки при декодировании. Например, если аденин случайно заменен на тимин.
Существуют также хромосомные и геномные мутации. Хромосомные мутации случаются, если участки наследственной информации выпадают, удваиваются либо вообще переносятся и встраиваются в другую хромосому.
Геномные мутации наиболее серьезны . Их причина — это изменение числа хромосом. То есть когда вместо пары — диплоидного набора присутствует в кариотипе триплоидный набор.
Наиболее известный пример триплоидной мутации — это синдром Дауна, при котором личный набор хромосом 47. У таких детей образуется 3 хромосомы на месте 21-й пары.
Известна также такая мутация, как полиплодия. Но полиплодия встречается только у растений.
Источник