По способу управления микропроцессоры могут быть

По способу управления микропроцессоры могут быть

По числу больших интегральных схем (БИС) в микропроцессорном комплекте различают микропроцессоры однокристальные, многокристальные и многокристальные секционные.

Процессоры даже самых простых ЭВМ имеют сложную функциональную структуру, содержат большое количество электронных элементов и множество разветвленных связей. Изменять структуру процессора необходимо так, чтобы полная принципиальная схема или ее части имели количество элементов и связей, совместимое с возможностями БИС. При этом микропроцессоры приобретают внутреннюю магистральную архитектуру, т. е. в них к единой внутренней информационной магистрали подключаются все основные функциональные блоки (арифметико-логический, рабочих регистров, стека, прерываний, интерфейса, управления и синхронизации и др.).

Для обоснования классификации микропроцессоров по числу БИС надо распределить все аппаратные блоки процессора между основными тремя функциональными частями: операционной, управляющей и интерфейсной. Сложность операционной и управляющей частей процессора определяется их разрядностью, системой команд и требованиями к системе прерываний; сложность интерфейсной части разрядностью и возможностями подключения других устройств ЭВМ (памяти, внешних устройств, датчиков и исполнительных механизмов и др.). Интерфейс процессора содержит несколько десятков информационных шин данных (ШД), адресов (ША) и управления (ШУ).

Однокристальные микропроцессоры получаются при реализации всех аппаратных средств процессора в виде одной БИС или СБИС (сверхбольшой интегральной схемы). По мере увеличения степени интеграции элементов в кристалле и числа выводов корпуса параметры однокристальных микропроцессоров улучшаются. Однако возможности однокристальных микропроцессоров ограничены аппаратными ресурсами кристалла и корпуса. Для получения многокристального микропроцессора необходимо провести разбиение его логической структуры на функционально законченные части и реализовать их в виде БИС (СБИС). Функциональная законченность БИС многокристального микропроцессора означает, что его части выполняют заранее определенные функции и могут работать автономно.

На рис. 1.1,а показано функциональное разбиение структуры процессора при создании трехкристального микропроцессора (пунктирные линии), содержащего БИС операционного (ОП), БИС управляющего (УП) и БИС интерфейсного (ИП) процессоров.

Рис. 1.1 Функциональная структура процессора (а) и ее разбиение для реализации процессора в виде комплекта секционных БИС.

Операционный процессор служит для обработки данных, управляющий процессор выполняет функции выборки, декодирования и вычисления адресов операндов и также генерирует последовательности микрокоманд. Автономность работы и большое быстродействие БИС УП позволяет выбирать команды из памяти с большей скоростью, чем скорость их исполнения БИС ОП. При этом в УП образуется очередь еще не исполненных команд, а также заранее подготавливаются те данные, которые потребуются ОП в следующих циклах работы. Такая опережающая выборка команд экономит время ОП на ожидание операндов, необходимых для выполнения команд программ. Интерфейсный процессор позволяет подключить память и периферийные средства к микропроцессору; он, по существу, является сложным контроллером для устройств ввода/вывода информации. БИС ИП выполняет также функции канала прямого доступа к памяти.

Выбираемые из памяти команды распознаются и выполняются каждой частью микропроцессора автономно и поэтому может быть обеспечен режим одновременной работы всех БИС МП, т.е. конвейерный поточный режим исполнения последовательности команд программы (выполнение последовательности с небольшим временным сдвигом). Такой режим работы значительно повышает производительность микропроцессора.

Многокристальные секционные микропроцессоры получаются в том случае, когда в виде БИС реализуются части (секции) логической структуры процессора при функциональном разбиении ее вертикальными плоскостями (рис. 1,б). Для построения многоразрядных микропроцессоров при параллельном включении секций БИС в них добавляются средства «стыковки».

Для создания высокопроизводительных многоразрядных микропроцессоров требуется столь много аппаратных средств, не реализуемых в доступных БИС, что может возникнуть необходимость еще и в функциональном разбиении структуры микропроцессора горизонтальными плоскостями. В результате рассмотренного функционального разделения структуры микропроцессора на функционально и конструктивно законченные части создаются условия реализации каждой из них в виде БИС. Все они образуют комплект секционных БИС МП.

Таким образом, микропроцессорная секция это БИС, предназначенная для обработки нескольких разрядов данных или выполнения определенных управляющих операций. Секционность БИС МП определяет возможность «наращивания» разрядности обрабатываемых данных или усложнения устройств управления микропроцессора при «параллельном» включении большего числа БИС.

Однокристальные и трехкристальные БИС МП, как правило, изготовляют на основе микроэлектронных технологий униполярных полупроводниковых приборов, а многокристальные секционные БИС МП на основе технологии биполярных полупроводниковых приборов. Использование многокристальных микропроцессорных высокоскоростных биполярных БИС, имеющих функциональную законченность при малой физической разрядности обрабатываемых данных и монтируемых в корпус с большим числом выводов, позволяет организовать разветвление связи в процессоре, а также осуществить конвейерные принципы обработки информации для повышения его производительности.

По назначению различают универсальные и специализированные микропроцессоры.

Универсальные микропроцессоры могут быть применены для решения широкого круга разнообразных задач. При этом их эффективная производительность слабо зависит от проблемной специфики решаемых задач. Специализация МП, т.е. его проблемная ориентация на ускоренное выполнение определенных функций позволяет резко увеличить эффективную производительность при решении только определенных задач.

Среди специализированных микропроцессоров можно выделить различные микроконтроллеры, ориентированные на выполнение сложных последовательностей логических операций, математические МП, предназначенные для повышения производительности при выполнении арифметических операций за счет, например, матричных методов их выполнения, МП для обработки данных в различных областях применений и т. д. С помощью специализированных МП можно эффективно решать новые сложные задачи параллельной обработки данных. Например, конволюция позволяет осуществить более сложную математическую обработку сигналов, чем широко используемые методы корреляции. Последние в основном сводятся к сравнению всего двух серий данных: входных, передаваемых формой сигнала, и фиксированных опорных и к определению их подобия. Конволюция дает возможность в реальном масштабе времени находить соответствие для сигналов изменяющейся формы путем сравнения их с различными эталонными сигналами, что, например, может позволить эффективно выделить полезный сигнал на фоне шума.

Разработанные однокристальные конвольверы используются в устройствах опознавания образов в тех случаях, когда возможности сбора данных превосходят способности системы обрабатывать эти данные.

По виду обрабатываемых входных сигналов различают цифровые и аналоговые микропроцессоры. Сами микропроцессоры цифровые устройства, однако могут иметь встроенные аналого-цифровые и цифро-аналоговые преобразователи. Поэтому входные аналоговые сигналы передаются в МП через преобразователь в цифровой форме, обрабатываются и после обратного преобразования в аналоговую форму поступают на выход. С архитектурной точки зрения такие микропроцессоры представляют собой аналоговые функциональные преобразователи сигналов и называются аналоговыми микропроцессорами. Они выполняют функции любой аналоговой схемы (например, производят генерацию колебаний, модуляцию, смещение, фильтрацию, кодирование и декодирование сигналов в реальном масштабе времени и т.д., заменяя сложные схемы, состоящие из операционных усилителей, катушек индуктивности, конденсаторов и т.д.). При этом применение аналогового микропроцессора значительно повышает точность обработки аналоговых сигналов и их воспроизводимость, а также расширяет функциональные возможности за счет программной «настройки» цифровой части микропроцессора на различные алгоритмы обработки сигналов.

Читайте также:  Самый простой способ маринования капусты

Обычно в составе однокристальных аналоговых МП имеется несколько каналов аналого-цифрового и цифро-аналогового преобразования. В аналоговом микропроцессоре разрядность обрабатываемых данных достигает 24 бит и более, большое значение уделяется увеличению скорости выполнения арифметических операций.

Отличительная черта аналоговых микропроцессоров способность к переработке большого объема числовых данных, т. е. к выполнению операций сложения и умножения с большой скоростью при необходимости даже за счет отказа от операций прерываний и переходов. Аналоговый сигнал, преобразованный в цифровую форму, обрабатывается в реальном масштабе времени и передается на выход обычно в аналоговой форме через цифро-аналоговый преобразователь. При этом согласно теореме Котельникова частота квантования аналогового сигнала должна вдвое превышать верхнюю частоту сигнала.

Сравнение цифровых микропроцессоров производится сопоставлением времени выполнения ими списков операций. Сравнение же аналоговых микропроцессоров производится по количеству эквивалентных звеньев аналого-цифровых фильтров рекурсивных фильтров второго порядка. Производительность аналогового микропроцессора определяется его способностью быстро выполнять операции умножения: чем быстрее осуществляется умножение, тем больше эквивалентное количество звеньев фильтра в аналоговом преобразователе и тем более сложный алгоритм преобразования цифровых сигналов можно задавать в микропроцессоре.

Одним из направлений дальнейшего совершенствования аналоговых микропроцессоров является повышение их универсальности и гибкости. Поэтому вместе с повышением скорости обработки большого объема цифровых данных будут развиваться средства обеспечения развитых вычислительных процессов обработки цифровой информации за счет реализации аппаратных блоков прерывания программ и программных переходов.

По характеру временной организации работы микропроцессоры делят на синхронные и асинхронные.

Синхронные микропроцессоры — микропроцессоры, в которых начало и конец выполнения операций задаются устройством управления (время выполнения операций в этом случае не зависит от вида выполняемых команд и величин операндов).

Асинхронные микропроцессоры позволяют начало выполнения каждой следующей операции определить по сигналу фактического окончания выполнения предыдущей операции. Для более эффективного использования каждого устройства микропроцессорной системы в состав асинхронно работающих устройств вводят электронные цепи, обеспечивающие автономное функционирование устройств. Закончив работу над какой-либо операцией, устройство вырабатывает сигнал запроса, означающий его готовность к выполнению следующей операции. При этом роль естественного распределителя работ принимает на себя память, которая в соответствии с заранее установленным приоритетом выполняет запросы остальных устройств по обеспечению их командной информацией и данными.

По организации структуры микропроцессорных систем различают микроЭВМ одно- и многомагистральные.

В одномагистральных микроЭВМ все устройства имеют одинаковый интерфейс и подключены к единой информационной магистрали, по которой передаются коды данных, адресов и управляющих сигналов.

В многомагистральных микроЭВМ устройства группами подключаются к своей информационной магистрали. Это позволяет осуществить одновременную передачу информационных сигналов по нескольким (или всем) магистралям. Такая организация систем усложняет их конструкцию, однако увеличивает производительность.

По количеству выполняемых программ различают одно- и многопрограммные микропроцессоры.

В однопрограммных микропроцессорах выполняется только одна программа. Переход к выполнению другой программы происходит после завершения текущей программы.

В много- или мультипрограммных микропроцессорах одновременно выполняется несколько (обычно несколько десятков) программ. Организация мультипрограммной работы микропроцессорных управляющих систем позволяет осуществить контроль за состоянием и управлением большим числом источников или приемников информации.

Источник

Классификация и структура микропроцессоров

Человечество проделало огромный путь к созданию вычислительных машин, без которых невозможно представить современное общество со всеми аспектами его жизнедеятельности в сферах промышленности, народного хозяйства и бытового устройства. Но и сегодня прогресс не стоит на месте, открывая новые формы компьютеризации. В центре же технологического развития уже несколько десятилетий находится структура микропроцессора (МП), которая совершенствуется в своих функциональных и конструкционных параметрах.

Понятие микропроцессора

Вам будет интересно: Mi Drop Xiaomi: что это за приложение и как им пользоваться?

В общем смысле понятие микропроцессора представляется как программно-управляемое устройство или система, базирующаяся на большой интегральной схеме (БИС). С помощью МП выполняются операции обработки данных или же управление системами, обрабатывающими информацию. На первых этапах развития МП базировались на отдельных низкофункциональных микросхемах, в которых присутствовали транзисторы в количестве от нескольких единиц до сотен. Простейшая типовая структура микропроцессора могла содержать группу микросхем, имеющих общие электротехнические, конструкционные и электрические параметры. Такие системы называются микропроцессорным комплектом. Наряду с МП, в одной системе могли также состоять постоянные и оперативные запоминающие устройства, а также контроллеры и интерфейсы для подключения внешней аппаратуры – опять же, по совместимым коммуникациям. В результате развития концепции микроконтроллеров микропроцессорный комплект дополнялся более сложными сервисными устройствами, регистрами, шинными формирователями, таймерами и т. д.

Вам будет интересно: Тюнер — это. ТВ-тюнер для телевизора: обзор, характеристики и отзывы

На сегодняшний день микропроцессор все реже рассматривается как отдельное устройство в контексте практического применения. Функциональная структура и принцип работы микропроцессора уже на этапах проектирования ориентируются на применение в составе вычислительного устройства, предназначенного для выполнения целого ряда задач, связанных с выполнением обработки и управления информацией. Ключевым звеном в процессах организации работы микропроцессорного устройства является контроллер, который обслуживает конфигурацию управления и режимы взаимодействия вычислительного ядра системы с внешней аппаратурой. В качестве промежуточного звена между контроллером и микропроцессором можно рассматривать интегрированный процессор. Его функционал ориентируется на решение вспомогательных задач, не связанных напрямую с назначением основного МП. В частности, это могут быть сетевые и коммуникационные функции, обеспечивающие работу микропроцессорного устройства.

Классификации микропроцессоров

Даже в простейших конфигурациях исполнения МП имеют множество технико-эксплуатационных параметров, по которым можно устанавливать классификационные признаки. Для обоснования основных уровней классификации обычно выделяют три функциональных системы – операционную, интерфейсную и управляющую. В каждой из этих рабочих частей также предусматривается целый ряд параметров и отличительных признаков, определяющих характер эксплуатации устройства.

Вам будет интересно: FM-антенна для музыкального центра: характеристики, советы по выбору

С точки зрения типовой структуры микропроцессоров классификация в первую очередь будет разделять устройства на многокристальные и однокристальные модели. Первые характеризуются тем, что их рабочие блоки могут функционировать в автономном режиме и выполнять заранее определенные команды. И в данном примере будут ярко выражены МП, в которых акцент делается на операционной функции. Такие процессоры ориентируются на обработку данных. В этой же группе, к примеру, трехкристальные микропроцессоры могут быть управляющими и интерфейсными. Это не значит, что операционная функция в них отсутствует, но в целях оптимизации большая часть коммуникационных и мощностных ресурсов отводится задачам генерации микрокоманд или возможностям взаимодействия с периферийными системами.

Читайте также:  Способ письма с древнегреческих памятников

Что касается однокристальных МП, то они разрабатываются с фиксированным набором команд и компактным размещением всех аппаратных средств на одном ядре. С точки зрения функциональности структура однокристального микропроцессора достаточно ограничена, хотя и более надежна, чем сегментные конфигурации многокристальных аналогов.

Еще одна немаловажная классификация относится к интерфейсному исполнению микропроцессоров. Речь идет о способах обработке входных сигналов, которые и в наши дни продолжают делиться на цифровые и аналоговые. Хотя сами процессоры являются цифровыми устройствами, в некоторых случаях использование аналоговых потоков себя оправдывает по цене и надежности. Для конвертации, впрочем, должны использоваться специальные преобразователи, которые вносят свой вклад в энергетическую нагрузку и конструкционную наполненность рабочей платформы. Аналоговые МП (как правило, однокристальные) выполняют задачи стандартных аналоговых систем – например, производят модуляцию, генерируют колебания, кодирование и декодирование сигнала.

По принципу временной организации функционирования МП делят на синхронные и асинхронные. Разница заключается в характере подачи сигнала к началу новой операции. Например, в случае с синхронным устройством такие команды подают управляющие модули независимо от исполнения текущих операций. В случае с асинхронными МП аналогичный сигнал может подаваться автоматически по факту завершения предыдущей операции. Для этого в логической структуре микропроцессора асинхронного типа предусматривается электронная цепь, обеспечивающая работу отдельных компонентов в автономном режиме при необходимости. Сложность реализации такого способа организации работы МП связана с тем, что не всегда в момент завершения одной операции бывает достаточно тех или иных ресурсов для начала следующей. Память процессора обычно используется как звено, управляющее приоритетами в самом выборе последующих операций.

Микропроцессоры общего и специального назначения

Основной сферой применения МП общего назначения являются рабочие станции, персональные компьютеры, серверы и электронные устройства, предназначенные для массового использования. Их функциональная инфраструктура ориентируется на выполнение широкого спектра задач, связанных с обработкой информации. Разработкой таких устройств занимаются компании SPARC, Intel, Motorola, IBM и другие.

Специализированные микропроцессоры, характеристики и структура которых строится на базе мощных контроллеров, реализуют сложные процедуры по обработке и преобразованию цифровых и аналоговых сигналов. Это весьма разнообразный сегмент, в котором представлены тысячи типов конфигураций. К особенностям структуры МП данного типа относят использование одного кристалла в качестве базы для центрального процессора, который, в свою очередь, может быть сопряжен с большим количеством периферийных устройств. В их числе значатся средства ввода/вывода, блоки с таймерами, интерфейсы, аналого-цифровые преобразователи. Также практикуется подключение специализированных устройств наподобие блоков генерации широтно-импульсных сигналов. За счет применения внутренней памяти такие системы имеют небольшое количество вспомогательных компонентов, поддерживающих работу микроконтроллера.

Характеристики микропроцессора

Вам будет интересно: Что лучше — скрутка или клеммник? Порядок подключения, виды, отзывы электриков

Рабочие параметры определяют спектр задач устройства и набор компонентов, которые в принципе можно использовать в конкретной структуре микропроцессора. Основные характеристики МП можно представить так:

  • Тактовая частота. Обозначает количество элементарных операций, которые система может выполнять за 1 сек. и выражается в Мгц. Несмотря на различия в структуре, разные МП преимущественно выполняют схожие задачи, но в каждом случае на это требуется индивидуальные время, которое отражается в количестве тактов. Чем МП мощнее, тем больше процедур он сможет выполнить в рамках одной временной единицы.
  • Разрядность. Количество двоичных разрядов, которые устройство может выполнять в одно и то же время. Выделяют разрядность шин, скорости передачи данных, внутренних регистров и т. д.
  • Объемом кеш-памяти. Это память, включенная во внутреннюю структуру микропроцессора и всегда работающая на предельных частотах. В физическом представлении это кристалл, размещенный на основной микросхеме МП и сопряженный с ядром микропроцессорной шины.
  • Конфигурация. В данном случае речь идет об организации команд и способов адресации. Практически тип конфигурации может означать возможности совмещения процессов выполнения нескольких команд одновременно, режимы и принципы работы МП и наличие периферийных устройств в базовой системе микропроцессора.

Архитектура микропроцессора

По большому счету МП является универсальным обработчиком информации, но в некоторых сферах его эксплуатации зачастую требуются особые конфигурации исполнения его структуры. Архитектура микропроцессоров отражает специфику применения конкретной модели, обуславливая особенности интегрированных в систему аппаратно-программных средств. Конкретно речь может идти о предусмотренных исполнительных устройствах, программных регистрах, способов адресации и наборов команд.

В представлении архитектуры и особенностей функционирования МП часто используют схемы устройства и взаимодействия доступных программных регистров, которые содержат управляющую информацию и операнды (обрабатываемые данные). Следовательно, в регистровой модели присутствует группа служебных регистров, а также сегменты для хранения операндов общего назначения. На этой основе определяется способ выполнения программ, схема организации памяти, режим работы и характеристики микропроцессора. Структура МП общего назначения, к примеру, может включать программный счетчик, а также регистры состояния и управления режимами функционирования системы. Рабочий процесс устройства в контексте архитектурной конфигурации может быть представлен в виде модели регистровых пересылок, обеспечивающих адресацию, выбор операндов и команд, пересылку результатов и т. д. Выполнение разных команд независимо от назначения будет оказывать влияние на регистр состояния, содержимое которого отражает текущее состояние процессора.

Общие сведения о структуре микропроцессоров

В данном случае под структурой следует понимать не только набор компонентов рабочей системы, но и средства соединения между ними, а также устройства, обеспечивающие их взаимодействие. Как и в функциональной классификации, содержание структуры можно выразить через три оставляющих – операционное наполнение, средства коммуникации с шиной и управляющую инфраструктуру.

Устройство операционной части определяет характер декодирования команд и обработки данных. В этот комплекс могут входить арифметико-логические функциональные блоки, а также резисторы для временного хранения информации – в том числе о состоянии микропроцессора. В логической структуре предусматривается использование 16-разрядных резисторов, которые выполняют не только логические и арифметические процедуры, но и операции сдвига. Работа регистров может быть организована по разным схемам, определяющим в том числе их доступность программисту. Отдельный регистр отводится для обеспечения функции аккумуляторного блока.

Устройства сопряжения с шиной отвечают за соединения с периферийной аппаратурой. В спектр их задач также входит осуществление выборки данных из памяти и формирование очереди команд. В типовую структуру микропроцессора входит указатель IP-команд, сумматоры адресов, сегментные регистры и буферы, посредством которых обслуживаются связки с шинами адреса.

Читайте также:  Что такое табличный способ задания функции

Управляющее устройство, в свою очередь, формирует управляющие сигналы, выполняет дешифровку команды, а также обеспечивает работу вычислительной системы, отдавая микрокоманды по внутренним операциям МП.

Структура базового МП

В упрощенной структуре данного микропроцессора предусматриваются две функциональные части:

  • Операционная. В этот блок входят средства управления и обработки данных, а также микропроцессорная память. В отличие от полной конфигурации, структура базового микропроцессора исключает наличие сегментных регистров. Некоторые исполнительные устройства объединяются в один функциональный блок, что также подчеркивает оптимизированный характер данной архитектуры.
  • Интерфейсная. В сущности, средство обеспечения связи с главной магистралью. В этой части содержатся регистры внутренней памяти и сумматор адреса.

На внешних выводных каналах базовых МП часто используется принцип мультиплексирования сигналов. Это означает, что передача сигналов происходит по общим каналам с разделением времени. Помимо этого, в зависимости от текущего режима функционирования системы один и тот же вывод может применяться для передачи сигналов разного назначения.

Структура команд микропроцессора

Данная структура во многом зависит от общей конфигурации и характера взаимодействия функциональных блоков МП. Однако еще на этапе проектирования системы разработчики закладывают возможности для применения определенного массива операций исходя из которого в дальнейшем формируется и набор команд. К наиболее распространенным функциям команд можно отнести следующие:

  • Передача данных. Команда осуществляет операции присваивания значений операндов источника и приемника. В качестве последних могут использоваться регистры или ячейки памяти.
  • Ввод-вывод. Через интерфейсные устройства ввода-вывода осуществляется передача данных в порты. В соответствии со структурой микропроцессора и его взаимодействием с периферийными аппаратными и внутренними блоками командами задаются адреса портов.
  • Преобразование типов. Определяются форматы и размерные значения используемых операндов.
  • Прерывания. Данный тип команд предназначен для управления программных прерываний – например, это может быть остановка функции процессора на фоне начала работы устройств ввода-вывода.
  • Организация циклов. Команды изменяют значение регистра ECX, который может использоваться в качестве счетчика при исполнении определенного программного кода.

Вам будет интересно: Германиевые транзисторы: обзор, характеристики, отзывы. Самые музыкальные транзисторы

Как правило, на базовые команды накладываются ограничения, связанные с возможностями оперирования определенными объемами памяти, одновременного управления регистрами и их содержимым.

Структура управления МП

Система управления МП базируется на управляющем блоке, который связан с несколькими функциональными частями:

  • Датчик сигналов. Определяет очередность и параметры импульсов, равномерно распределяя их во времени по шинам. Среди характеристик работы датчиков значится количество тактов и управляющих сигналов, требуемых для выполнения операций.
  • Источник сигналов. Одна из функций блока управления в структуре микропроцессора отводится генерации или обработке сигналов – то есть их коммутации в рамках конкретного такта на определенной шине.
  • Дешифратор кода операций. Выполняет дешифровку кодов операций, присутствующих в регистре команд на текущий момент. Совместно с определением активной шины данная процедура помогает также формировать последовательность управляющих импульсов.

Немаловажное значение в управляющей инфраструктуре имеет постоянное запоминающее устройство, которое содержит в своих ячейках сигналы, требующиеся для выполнения операций обработки. Для счета команд при обработке данных импульса может применяться узел формирования адреса – это необходимый компонент внутренней структуры микропроцессора, который входит в интерфейсный блок системы и позволяет считывать реквизиты регистров памяти с сигналами в полном объеме.

Компоненты микропроцессора

Большая часть функциональных блоков, а также внешних устройства организуется между собой и центральной микросхемой МП через внутреннюю шину. Можно сказать, это магистральная сеть устройства, обеспечивающая всестороннюю коммуникационную связь. Другое дело, что и шина может иметь в составе разные по функциональному назначению элементы – например, контуры для передачи данных, линии передачи ячеек памяти, а также инфраструктура для записи и считывания информации. Характер взаимодействия между блоками самой шины определяется структурой микропроцессора. К устройствам, входящим в состав МП, помимо шины, можно отнести следующие:

  • Арифметико-логическое устройство. Как уже говорилось, данный компонент предназначен для выполнения логических и арифметических операций. Он работает как с числовыми, так и с символьными данными.
  • Устройство управления. Отвечает за координацию при взаимодействии разных частей МП. В частности, этот блок генерирует сигналы управления, направляя их к разным модулям устройства машины в определенные моменты времени.
  • Микропроцессорная память. Используется для записи, хранения и выдачи информации. Данные могут быть связаны как с рабочими вычислительными операциями, так и с процессами, обслуживающими машину.
  • Математический процессор. Применяется как вспомогательный модуль для повышения скорости при выполнении сложных вычислительных операций.

Особенности структуры сопроцессора

Даже в рамках выполнения типовых арифметико-логических операций бывает недостаточно мощностей обычного МП. Например, микропроцессор не имеет возможностей для выполнения арифметических команд, предусматривающих использование чисел с плавающей точкой. Для подобных задач применяют сопроцессоры, в структуре которых предусматривается объединение центрального процессора с несколькими МП. При этом сама логика работы устройства не имеет принципиальных отличий от базовых правил построения арифметических микросхем.

В сопроцессорах выполняются типовые команды, но в тесном взаимодействии с центральным модулем. В данной конфигурации предполагается постоянный контроль очередей команд по нескольким линиям. В физической структуре микропроцессора данного типа допускается использование независимого модуля для обеспечения ввода-вывода, особенностью которого является возможность выбора своих команд. Однако для корректной работы такой схемы сопроцессоры должны четко определять источник выбора команд, координируя взаимодействие между модулями.

С концепцией устройства сопроцессора связан и принцип построения обобщенной структуры микропроцессора с сильно связанной конфигурацией. Если в предыдущем случае речь может идти о независимом блоке ввода-вывода с возможностью собственного подбора команд, то сильно связанная конфигурация предполагает включение в структуру независимого процессора, управляющего командными потоками.

Заключение

Принципы создания микропроцессоров претерпели немного изменений с момента появления первых вычислительных устройств. Менялись характеристики, конструкции и требования к ресурсному обеспечению, что кардинально изменило ЭВМ, однако общая концепция с базовыми правилами организации функциональных блоков по большей части сохраняется прежней. Тем не менее на будущее развития структуры микропроцессора могут оказать влияние нанотехнологии и появление квантовых вычислительных систем. Сегодня подобные направления рассматриваются на теоретическом уровне, но крупные корпорации активно работают над перспективами практического использования новых логических схем на инновационных технологиях. Например, в качестве возможного варианта дальнейшего развития МП не исключено применение молекулярных и субатомных частиц, а традиционные электрические цепи могут уступить место системам направленного вращения электронов. Это позволит создавать микроскопические процессоры с принципиально новой архитектурой, эксплуатационные характеристики которой многократно будут превосходить сегодняшние МП.

Источник

Оцените статью
Разные способы